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Craig Callender claims that ‘time is the great informer’, meaning that the directions in which
our ‘best’ physical theories inform are temporal. This is intended to be a metaphysical claim,
and as such expresses a relationship between the physical world and information-gathering
systems such as ourselves. This article gives two counterexamples to this claim, illustrating
the fact that time and informative strength doubly dissociate, so the claim cannot be about
physical theories in general. The first is a case where physical theories inform in directions
that we have no reason to regard as temporal. The second is a case where our best physical
theories fail to inform in directions that we have independent (pre-theoretic) reasons to regard
as temporal. Taking these two cases into account suggests that the connection Callender
makes between time and informativeness is perspectival. The second case demonstrates that
although scientists often seek information in temporal directions, the behaviour of the physical
world can present serious difficulties for finding it. In response, this article proposes a perspec-
tival reading of Callender’s claim, according to which the connection between time and infor-
mative strength has more to do with the aims and objectives of science than the workings of
the physical world.
1. Introduction

We begin with the problem of how to distinguish time from space in post-relativistic

physics. It will be clear to many readers that time and space are essentially different,

at least in the way we experience them. Getting lost, for example, is a rather different

problem from being late; travel is permitted in any direction of space, but the same

cannot be said for time; and spatially distant objects can be seen or accessed in a way

that temporally distant objects cannot. These (and other) differences are encoded in a

host of ways across physics. Despite relativistic physics teaching us about some im-

portant inter-dependence relationships between space and time, their differences are

nonetheless encoded by asymmetries in the models of the theory. There remain

questions about whether there might be a philosophical underpinning of the various
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asymmetries between time and space that we find in physical theories, and about

whether such asymmetries are physically necessary.1

Callender ([2017], chap. 7) addresses these questions with his attempt to ‘bind

together’ the differences between time and space, by claiming that ‘time is the great

informer’, meaning that the direction in which the laws of our ‘best’ theories inform

is temporal, not spatial.2 This article gives two counterexamples to this claim. The

first is a case where physical theories inform in directions that we have no reason to

regard as temporal. The second is a case where our best physical theories fail to give

precise information over short timescales or accurate information over long time-

scales, where we have independent (pre-theoretic) reasons to regard these directions

as temporal. Taking these two cases into account breaks the connection Callender

makes between time and the informative strength of physical laws. The second case

demonstrates that although scientists often seek information in temporal directions,

the behaviour of the physical world can present serious difficulties for finding it.

This motivates the view that the connection between time and informative strength

has more to do with the aims and objectives of science than the workings of the

physical world.

The positive proposal of this article, namely, that time is connected to the infor-

mative strength of physical laws only for a certain set of scientific aims, is related to

‘temporal perspectivalism’, a position advanced in (Baron and Evans [2021]). Their

reading of Callender’s argument leads to the conclusion that the asymmetry between

time and space is an artefact of our human epistemic situation. The alternative inter-

pretation offered in the present work is also a form of perspectivalism, but the scope

is narrower: it is only the connection Callender makes between time and informative

strength, and not the asymmetry between time and space per se, that is reduced to a

set of perspectives. However, the perspectivalism in this case is more worrying for

objectivity, because the set of perspectives in question is identified by the specific

aims of some human scientists, rather than the epistemic situation of the entire pop-

ulation. The proposal is rooted in empiricism (which Callender claims also to be

committed to), a weak version of which can be spelt out as follows: the informative-

ness of physical laws is contingent on their formal characteristics being a good rep-

resentation of empirically accessible phenomena.

The structure of this article is as follows: Section 2 gives a summary of the main

arguments including the ‘perspectival’ reading of Callender’s argument offered in
1 To be clear, this article is about asymmetries between time and space, and not about the asymmetry of
time. It has nothing to do with differences between past and future, for example, and the thermodynamic
arrow of time will not be mentioned. It is about differences between time and space, and to the extent that
spacetime can be thought of as a single structure it is appropriate to refer to the ‘asymmetry’ of this struc-
ture as encoding some of these differences.

2 A different response might consider this asymmetry to be a defining characteristic of any structure that
can properly be called spatiotemporal. A proposal of this nature has been made use of in (Le Bihan and
Linnemann [2019]), in order to strengthen connections between the asymmetric spacetime of general rel-
ativity and asymmetric ‘quasi-spacetime’ structures in theories of quantum gravity.
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(Baron and Evans [2021]). Section 3 sets out the technical material necessary for

understanding Callender’s thesis and the two additional cases. Section 4 argues that

the two additional cases are indeed counterexamples to Callender’s claim, and ex-

plains how they motivate the alternative proposal connecting time to the aims of

many scientific endeavours to provide certain forms of information. Section 4.3

compares the two forms of perspectivalism, gesturing towards some possible impli-

cations of their combination. Finally, section 5 briefly concludes.
2. Overview

Section 2.1 summarises the connection Callender makes between time and informa-

tiveness in physical laws. This is followed by an overview, in section 2.2, of the

reading of his arguments suggested by Baron and Evans, leading to their proposal

for a perspectival take on the time-space asymmetry. It then outlines some further

discussion of Callender’s argument in section 2.3, laying the groundwork for under-

standing the significance of the two counterexamples. Finally, in section 2.3, it out-

lines an alternative proposal: the connection between time and informativeness is an

artefact of the aims and interests of scientists working on specific research programs.

This alternative proposal can be viewed as a perspectival reading of Callender’s ar-

gument, but where the perspectivalism applies specifically to the connection be-

tween time and informativeness rather than the asymmetry between time and space

itself. This reading is, however, more problematic for the generality of Callender’s

metaphysical thesis than that suggested by Baron and Evans, because the perspec-

tives to which his claim is reduced form a subset of the regimes used in scientific

practice rather than the epistemic perspective of human beings in general.
2.1. Time as the great informer

Callender identifies features of time as it appears in physical theories, which distin-

guish it from space. He attempts to weave these together into a general metaphysical

thesis by connecting to a Lewisian best systems account (BSA) of physical modal-

ity.3 His strategy is to use the principles of the BSA to provide criteria for identifying

a representative set of physical laws, whose mathematical form he analyses in order

to give a general message about spatiotemporal structure. His conclusion is that

‘time is the great informer’—time is the set of directions on a four-dimensional man-

ifold of events in which laws give the most information. He summarises this view

with the statement that ‘time is that direction on the manifold of events in which

we can tell the strongest or most informative stories’ (Callender [2017], p. 142).

So, the most informative directions on the manifold are labelled as ‘time’. We begin
3 See (Lewis [1983]) for details of this account. See also (Loewer [1996]; Maudlin [2007]; Cohen and
Callender [2009]; Belot [2011]; Massimi [2018a]) (to name but a few) for discussion.
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with the notion of informativeness and end up with a set of privileged ‘time-like’

directions. I call this hypothesis Callender’s temporal informativeness proposal

(TIP).

Callender ([2017], p. 120) gives several slight variants of this overall conclusion.

He writes, ‘the temporal direction is that direction on the manifold of events in

which our best theories can tell the strongest, most informative “stories.” Put another

way, time is that direction in which our theories can obtain as much determinism as

possible’. A slightly more precise formulation is given a little later: ‘A temporal di-

rection at a point p on hMd, gi is that direction (n,2n), where (n,2n) is an unordered

pair of nowhere vanishing vectors, in which our best theory tells the strongest, i.e.,

most informative, “story”’. His strategy does not ‘assume that the “timelike” directions

of g, if any, are themselves temporal directions. That’s something we hope emerges

from the analysis, not something put in’ (pp. 142–43).

By way of explanation for his proposed conclusion, Callender ([2017], p. 120)

states that ‘strength is linked to time because it is deeply connected to the other tem-

poral features of our universe. If I am right, “strength” is the glue that binds together

many otherwise detachable features central to time’. This article does not aim to out-

right deny that there is any link at all between strength (informativeness) and time,

but instead to propose a different, perspectival, explanation for it. It does so by ac-

knowledging the lack of generality of the link Callender makes between strength (in-

formativeness) and time, questioning what it is that unites the examples in physics

where the link obtains and comparing them to examples where this link does not ob-

tain. Callender’s claim is that his ‘attractive idea about time is more or less implied

by a “systems” approach to laws’. He states also that ‘the difference [between time

and space, based on the way laws inform] ultimately lay in the distribution of phys-

ical properties’ (p. 156). This part of his thesis will also be challenged, especially

through the analysis of chaotic systems in section 3.3.

The argument for TIP is explicitly based on a Humean view of laws, according to

which ‘laws are simply the best summary of the facts’ (Callender [2017], p. 140).

This is where a commitment to Humean metaphysics and empiricist epistemology

is made. According to Callender (p. 140), ‘Humean theories seek to explain the laws

given the distribution of actual facts’, the actual facts being facts that are (at least in

principle) empirically accessible.4 In the language of Lewis ([1983]), the laws super-

vene on the mosaic of particular facts, meaning that there could not be a change in

the laws without there being a corresponding change in the particular facts they de-

scribe (Bennett and McLaughlin [2018]). There are formally different ways to de-

scribe the same mosaic of facts, but these descriptions will not differ in content.

The BSA provides a way of distinguishing between these formally different descrip-

tions, elevating to the status of law parts of those descriptions, taking the form of
4 Taking the distribution of empirical facts as given follows from the commitment to empiricism, central
to Humean theories in general.
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deductive systems, which satisfy some set of ‘theoretical virtues’, in particular sim-

plicity and strength.5 Callender invites us to ‘consider various deductive systems,

each of which only makes true claims about what exists’ ([2017], p. 140). We then

employ the theoretical virtues of strength and simplicity, emphasizing strength in

particular, to identify the systems and associated laws that give the best description

of the world. ‘The motivation for the [BSA] theory is’, according to Callender

(p. 140), ‘the idea that physical laws seek to describe accurately as much of the

world as possible in a compact way’.6 TIP comes out of an analysis of laws that,

Callender claims, achieve this goal.

We need not concern ourselves very much with the notion of simplicity.

Callender briefly discusses the simplifying role that time plays in physical laws,

but asserts that ‘there is nothing special about time here. [. . .] Space, for instance,

is also the great simplifier’. For this reason, we must focus also on the virtue of

strength, thought of as informativeness. ‘In balancing simplicity and strength, a best

system will [. . .] contain a way to generate some pieces of the domain of events given

other pieces. In other words, it will favour algorithms, and short ones at that. The

more of what happens that is generated by small input the better’ (Callender [2017],

p. 141). The claim is that a privileged time parameter is what gives physical laws their

informative strength.

There are two versions of this argument given, an ‘informal’ one in (Callender

[2017]) chapter 7 and a ‘formal’ one in chapter 8. It is indicated that these two ver-

sions of the argument are supposed to work together, that the latter version is intended

to flesh out the former, adding credibility to it with the investigation into formal char-

acteristics of equations used in physics. This version of his argument in chapter 8 pro-

ceeds by identifying a broad set of physical laws, generalized by their mathematical

form, which provide algorithms that are informative in this sense. These laws take

the form of partial differential equations (PDEs) that support well posed Cauchy

problems. He investigates the mathematical form of these PDEs, and it is in this math-

ematical form that we find a privileged set of ‘informative’ directions that are defined

as ‘time-like’: these equations use antecedent data to provide maximal information in

time-like directions.

PDEs that support Cauchy problems do provide concise algorithms and are partic-

ularly informative over their domains of applicability. Section 4 explores Callender’s

justification for singling out these laws as being maximally informative, regardless of

applicability. As described in section 3, it is their geometric structure—specifically,

they are hyperbolic—that makes the distinction between time-like and space-like di-

rections. Hyperbolic PDEs, when defined on some manifold, divide the tangent
5 Theoretical virtues may also include uniformity, elegance, generality and perhaps more, but we follow
Callender in focusing only on simplicity and strength.

6 Seeking to describe the world is another expression of the empiricist commitments of Humean theories, if
‘the world’ is taken to refer to that which is observable, measurable, or otherwise empirically accessible.
If ‘the world’ consisted of more than this it would be difficult to understand laws as being descriptive,
because we would have no way of comparing descriptions with what they describe.
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space of each point of that manifold into three regions by a pair of intersecting cone-

shaped surfaces, in amanner analogous to the light-cone structure of special relativity

and locally of general relativity. Restricting to well-posed problems means that ante-

cedent data can only be defined on surfaces corresponding to space-like regions, and

the PDEs evolve this in directions that correspond to the time-like. Therefore, the

physical laws selected using the BSA criteria distinguish time from space, where

the time-like and not the space-like directions are informative.

Callender suggests two alternative ways to read his proposal: one ‘conservative’

and one ‘radical’. So far we have been vague about what exactly the mosaic of facts

or manifold of events or supervenience basis consists of. The two readings of the

argument, to some degree, take care of this issue. According to the more conserva-

tive reading, the supervenience basis consists of events on a Lorentzian manifold

endowed with a spacetime metric, which has an asymmetry between time and space

built into its signature. The best systems merely embody the structure already as-

sumed to be present in the manifold; the distinction between time and space does

not emerge through systematization, but the connection between time and informa-

tiveness does. According to Callender ([2017], p. 151), however, the ‘radical per-

spective is the more natural development of the theory’. This second reading assumes

only ‘the events e on M’ and the best systems ‘arrive at the spacetime metric g and

laws L together’ (p. 150). So, Callender’s preferred interpretation of TIP means that

by focusing on informative laws, the asymmetry between time and space is derived

through systematization, and time is defined as the set of directions that are maxi-

mally informative.
2.2. Temporal perspectivalism

Baron and Evans ([2021]) explore some consequences of adopting the radical read-

ing of TIP, according to which, ‘the metrical difference between the timelike and

spacelike—the centerpiece of all our physical theories—also [in addition to the link

between time and informativeness] depends on the system’ (Callender [2017], p. 151).

What Baron and Evans ([2021], p. 179) propose is a thesis they call ‘temporal

perspectivalism’, where the distinction between time and space is only objective

‘so long as this is understood in a deflationary, epistemic sense’.7 They admit some

invariant structure in the world, existing independently of any perspective, which we

then divide into time-like and space-like directions ‘based on our idiosyncratic ep-

istemic constraints and limitations concerning that structure’ (p. 178), so temporal

directions are picked out by both the notion of informativeness and the epistemic

perspectives of agents, and are not part of the invariant structure. To be clear, they

do not refute TIP: they do not contest that the directions of maximal informativeness
7 Their view is inspired by, and analogous to, the ‘causal perspectivalism’ of Price and Ismael (Price and
Corry [2007]; Ismael [2016]). This should not be confused with ‘perspectival realism’ (for example, see
Giere [2010]; Teller [2011]; Massimi [2016]).
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in our laws pick out time. Instead, the resulting asymmetry between time and space

is considered to be a mere artefact of our human perspective, and this view is a con-

sequence of accepting the radical version of TIP.8

To flesh this out, as a thought experiment, they consider the possibility of Martian

scientists who do not share our epistemic situation within the invariant structure of

the world.9 Imagine that these Martians are ‘smeared out’ across what we call the

temporal dimension and two of our spatial dimensions, and they seek laws that in-

form along their forth dimension (which would be spatial, for us). They would iden-

tify their own natural kinds, as we do, according to the kinds of empirical data avail-

able to them, and ‘one could imagine complete incommensurability between the two

ways of carving up the world’ (Baron and Evans [2021], p. 175). Hypothetically,

they might design the same PDEs as us, based on the same concerns about informa-

tiveness, but would disagree about which directions on the manifold should be re-

garded as time-like. The point of temporal perspectivalism is that this would be a

‘no-fault’ disagreement: there is no fact of the matter about who would be correct.

Even if communication with these Martians were possible, there would be no clear

method for decidingwhich description to prioritise, and no reason to privilege one over

the other in a perspective-independent way. We would have our ‘time’ as the direc-

tions in which our laws are maximally informative; they would have theirs. The ‘mere

possibility’ of such Martian scientists, according to Baron and Evans (p. 175), ‘sug-

gests that the distinction [between time and space] is pragmatic in origin’.10

Their reasons for adopting this odd-sounding view come from taking the radical

reading of Callender’s arguments at face value. If time is defined as the direction in

which well posed Cauchy problems are maximally informative, then we are at lib-

erty to hypothesize agents for whom this direction turns out to be different from our

own. After all, scientific laws are designed very much with our epistemic vantage

point in mind—their very purpose is to give information about what we do not have

direct empirical access to. For us, this is what we call the temporal future. For the

Martians, this might be what we call east or west perhaps. Looking more closely

at this thought experiment reveals that it is the orientation of the distinction between

time and space that is discussed, not the existence of a distinction in the first place.

‘Time’ and ‘space’ are still distinguished for the Martians, only their ‘time’ is dif-

ferent from ours. We are not invited to imagine the laws that scientists from Venus

might come up with if, for example, they had epistemic access to all four dimensions

of the manifold. In this case, there would likely be ‘no-fault’ disagreements with us

earthlings about whether there needs to be a privileged time dimension at all, if our
8 This consequence may be unpalatable to some readers, providing further motivation for looking for
ways to reject TIP.

9 To be clear, this Martian thought experiment is Callender’s, but is described very clearly in (Baron and
Evans [2021]) and used there to elucidate their position.

10 Note that pragmatic concerns can come from two sources: our epistemic situation, which is the focus
of Baron and Evans, and particular aims and interests, which will be our focus later on. Of course these
two sources are related.
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concerns lie solely with informativeness. So for Baron and Evans it is taken to fol-

low from Callender’s arguments that there are privileged time-directions, but there

may be disagreements between agents with differing perspectives about which di-

rections these are. A similar thought experiment, combined with Callender’s argu-

ments, could lead to the very definition of time being a matter of perspective.

In what sense are the hypothetical Martian scientists possible? Clearly, their possi-

bility cannot be a symptom of our physical laws because this would induce a circular-

ity in the reasoning. Without an answer to this question, it is difficult to understand

how we could motivate anything other than agnosticism about the objectivity of the

directions we regard as temporal. Ours might be the only possible epistemic situation

for cognitive agents—who knows? It is also difficult to see how any single scientific

fact could avoid falling prey to this sort of perspectival reading, since science is nec-

essarily built up from our epistemic perspective and makes use of empirical data

we have access to. To avoid these difficulties, we shall explore the extent to which

Callender’s arguments induce a different sort of perspectival reading. Might there

be alternative human perspectives that would disagree about which directions are

temporal? If we define time as the direction in which laws are maximally informa-

tive, as has been suggested by both Callender and Baron and Evans, this indeed turns

out to be the case. This is the case, so long as we do not restrict attention to well

posed Cauchy problems. The disagreements between these different human perspec-

tives would be based on their pragmatic concerns relating to the kinds of projects

they engage in, since not all scientists specialize in dynamics. This points to an ab-

surdity in defining time in this way; at best, informativeness can be an ingredient in

a pluralistic definition of time.
2.3. Temporal aims

We need not consider imaginary alien scientists who disagree about which directions

are temporal in order to give a perspectival reading of Callender’s thesis. Instead, we

shall think about real human scientists whose laws inform in directions that are not re-

garded as temporal, and others who struggle to generate any accurate information in

directions that are uniformly regarded as time by those scientists. TIP is reduced to

a particular subset of human interests and pragmatic concerns. Unlikewith the thought

experiments of Baron and Evans, everyone agrees about which directions to regard as

temporal. The ‘no-fault’ disagreements are about which directions are maximally in-

formative, because this depends on what we wish to be informed about. The connec-

tion between time and informativeness is thus more strongly perspectival, because it is

as much about the interests and aims of particular groups of scientists as the epistemic

situation of humans, and so we replace TIP with TAP: temporal aims proposal.11
11 My analysis of TIP means that it can be thought of as a perspectival truth in Massimi’s ([2018b]) sense,
because its truth is dependent on a particular set of scientific perspectives (where alternatives are avail-
able) as opposed to being dependent on the epistemic situation of an entire species.
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There are several ingredients of Callender’s argument that can be used to undercut

TIP, one of which leads towards TAP. Our focus will be on the commitment to em-

piricism that, if we recall, is a fundamental ingredient of Humean theories, and

Callender’s proposal purports to be both Humean and empiricist. This commitment

sits uncomfortably with Callender’s method of conducting an analysis of the purely

formal characteristics of laws as a way of generating metaphysical claims. If we per-

form a similar analysis whilst holding on to some basic empiricist principles, we ar-

rive at the conclusion that time is not ‘the direction on the manifold in which we can

tell our strongest or most informative stories’ (Callender [2017], p. 142; emphasis

added), but is instead the direction in which we would most like to be able to tell

our best stories.12 The applicability of the laws to observable, measurable or other-

wise empirically accessible physical contexts is all-important here. My view is com-

patible with that of Baron and Evans but, unlike theirs, does not rely on adopting the

so-called radical reading of Callender’s proposal; it follows from the ‘conservative’

reading too. For this reason, it is neither the distinction between time and space in

general, nor the particular set of directions that are defined to be time-like, that

are relativized to human perspectives. Instead it is only the specific connection be-

tween time and informativeness, and this is relativized to some human perspectives.

My main objection is almost preempted by Callender himself. ‘Confining atten-

tion to the marks of strength but not to strength itself would be a mistake’, he warns

us (Callender [2017], p. 207). He then goes on tomake this very mistake, and the rest

of his argument follows from it. His analysis focuses on too narrow a set of laws

(identified by the marks of strength they exhibit) to draw a general conclusion about

the role of time. He goes on: ‘The degree to which a theory is informative is deter-

mined by how much of the world it manages to imply, not (in the general theory, at

least) by formal characteristics’ (p. 143; emphasis added). Attributing epistemic pri-

ority to the world over formal characteristics of theories is part of the commitment to

empiricism, which is central to the BSA and to Humean metaphysics in general.13

Callender’s subsequent analysis of Cauchy problems is in terms of their formal char-

acteristics, therefore only managing to achieve an assessment of their hypothetical

informativeness. Their actual informativeness is contingent on these formal charac-

teristics being a good representation of the world. What we shall see is that there are

many empirically accessible physical phenomena to which Cauchy problems simply

do not apply. Perhaps more worryingly, the directions that are uniformly labelled

as time are especially uninformative for many of these phenomena. Section 3 presents

two examples to illustrate these points.
12 The point here is to emphasize not only our pragmatic concerns that stem from our particular epistemic
situation, but also those that are about particular interests.

13 For discussion of these issues, see, for instance, (Carnap [1950]; Quine [1951]; Cottingham [1988];
Lewis [1999]; Gupta [2006]). Feyerabend ([1984]) gives an account of an empiricist epistemological
position attributed to Mach’s philosophical work, showing how it differs from the use of principles in his
physics research.
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Ongoing research in the area of dynamical systems theory presented in section 3.3

is focused on developing techniques to try to make better predictions about the

temporal future, but often these techniques are complex—thus requiring some relax-

ation of the other ‘horn’ of the BSA, namely, simplicity. Nonetheless, one of the cen-

tral aims of science is to make informative predictions over directions that we have

independent (pre-theoretic) reasons to regard as temporal. The connection between

time and informative strength in physical laws is thus more plausibly thought of as

being entirely pragmatic and not metaphysical, reducible to the aims and interests

of scientists rather than to the way the world is.

3. Physical Laws

This section sets out the technical material that is relevant to the arguments presented.

In order to fully appreciate the central claims of this article, it is necessary to engage

with some mathematical details. Only those equations that contribute towards under-

standing the philosophical arguments are presented, and their relevance is explained.

Section 3.1 describes the structure of PDEs that support well posed Cauchy problems,

required to understand the details of Callender’s proposal and the ‘perspectival’ inter-

pretation of Baron and Evans. The mathematical details of two counterexamples to

TIP, which instead motivate TAP, are given in sections 3.2 and 3.3. The first of these

is a problem for both readings of TIP, while the second is problematic only for the

radical interpretation.

3.1. Time and informative strength

Cauchy problems are a kind of boundary value problem (BVP) that can be set for

second order linear PDEs in m independent variables.14 In its most general form

f(u, xi, pi, ri, sik) 5 0, (1)

for i 5 1, ... , m; k 5 1, ... , m for i ≠ k. The solution of the equation, u, is our

unknown function of the m independent variables, xi. The xis represent physical

quantities, and the solution u describes a function relating these to one another.

Some arbitrary function of the variables in parentheses is f, where pi 5 ∂u=∂xi,
ri 5 ∂2u=∂xi2 and sik 5 ∂2u=∂xi∂xk . The PDE is solved subject to antecedent

conditions:

AC1: u(x1, ::: , xm21, 0) 5 u0(x1, ::: , xm21).

AC2: (∂u=∂xm)(x1, ::: , xm21, 0) 5 u1(x1, ::: , xm21).
14 My presentation of Cauchy problems and of PDEs is taken primarily from (Garabedian [1964]; Robin-
son [1998]; Rubinstein and Rubinstein [1998]; Hadamard [2003]; Klainerman [2010]). The simplest
Cauchy problem is set for a first order ordinary differential equation, and the definition of a Cauchy
problem generalises to PDEs of order n. For ease of exposition, our discussion focuses only on the case
of second order PDEs, since these are the most prevalent in physical problems.
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Antecedent data of this form are called Cauchy data, defining the problem as a Cau-

chy problem. Notice that both conditions AC1 and AC2 are known functions of

m 2 1 of the m independent variables, and so must be given on a hypersurface of

dimension one less than the full solution space.

In order to be ‘well posed’, a Cauchy problem must satisfy the following three

criteria:

WP1: A solution must exist.

WP2: The solution must be unique.

WP3: Solutions must vary continuously with antecedent data.

The first two of these criteria are jointly sufficient to define the equation as deter-

ministic.15 They ensure that one and only one solution corresponds to each set of

antecedent conditions. The third criterion is stronger, requiring that variations of the

antecedent data map to corresponding variations of the solution by a continuous func-

tion. In practical applications this means that errors made in the computation of either

AC1 or AC2 are not amplified, or at least that the amplification of errors can be

controlled.

In order to establish conditions under which equation 1, together with antecedent

conditions AC1 and AC2, meets the three criteria to be well posed, leading to the dis-

cussion of space and time, we express equation 1 in linear form:

o
i,k

Aik
∂2u

∂xi∂xk
1o

i

Bi
∂u
∂xi

1 Cu 5 f , (2)

where Aik is a matrix, Bi is a vector and C is a scalar, all of which we assume to be

constant, and f is some linear function of the independent quantities xi.
16 Equation 2

may be classified according to the eigenvalues of Aik as follows:

Elliptic if and only if all eigenvalues of Aik are non-zero and have the same sign.

Hyperbolic if and only if all eigenvalues of Aik are non-zero, and all but one have

the same sign.

Parabolic if and only if any eigenvalues of Aik vanish.

Cauchy conditions AC1 and AC2 yield unique solutions only for hyperbolic PDEs.

Other kinds of boundary condition (for example Dirichlet or Neumann boundary

conditions, which will be defined in sec. 3.2) are either too restrictive for a solution
15 Note that this is a mathematical definition of a deterministic equation, and should not be confused with
philosophical issues about deterministic theories or worlds.

16 We assume that equation 2 has constant coefficients in the interest of simplicity of presentation. In full
generality, the coefficients of a second order linear PDE may be known functions of the xis, but classi-
fication of PDEs with variable coefficients is much more difficult, though not impossible. For the sake
of argument, we may assume that the results suitably generalise.
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to exist, or are not sufficient to give a unique solution. Conversely, Cauchy data

are either too restrictive or insufficient to yield unique solutions for elliptic and para-

bolic equations. These require either Dirichlet or Neumann boundary conditions.

Therefore, a well posed Cauchy problem consists of a hyperbolic PDE subject to

conditions AC1 and AC2.

The characteristics of a PDE place restrictions on where antecedent data can be

defined in order to ensure the existence of a unique solution.17 Characteristics of

equation 2 are defined to be surfaces or hypersurfaces y(x1, :::, xm) 5 c, for con-

stant c, where y is a solution of

o
i,k

Aik
∂y
∂xi

∂y
∂xk

5 0: (3)

Solving equation 1 for our different classes of PDE shows that elliptic PDEs have

no real characteristics, and parabolic PDEs have one family of plane characteristics

for each constant xm. Hyperbolic PDEs, where Cauchy problems are well defined,

have two families of conoid characteristics. InR3 these are pairs of two-dimensional

cone-shaped surfaces sharing a vertex at each point of the domain. In higher dimen-

sional spaces, conoid characteristics are higher dimensional generalizations of this

basic structure. Figure 1 shows a geometric representation of the characteristics of a

hyperbolic PDE in R3.

The Cauchy–Kowalewski theorem states that to ensure the existence of a unique so-

lution, antecedent data for a PDEmust not intersect or be tangent anywhere to a charac-

teristic.18 Recall that antecedent conditions AC1 and AC2 must be defined on a (hyper)

surface of dimension one less than the full solution space, and consider where such a

surface may be placed so as to avoid the characteristics of a hyperbolic PDE. As shown

in figure 2, inR3 this can be any two-dimensional open surface that passes through the

vertices of the cones, whose curvature is such that it never touches the cones. A (hyper)

surface on which Cauchy data are defined is known as a Cauchy surface.19

A linear hyperbolic PDE that satisfies criteria WP1 and WP2, in regions of its do-

main where solutions are defined for correctly formulated Cauchy data, will also sat-

isfy WP3.
20 This is the case, provided that solutions do not intersect and are not tangent
17 Characteristics are important for several other reasons too; for example, in many cases solving the ‘char-
acteristic equation’ associated with a PDE is a crucial step in solving the PDE itself. For the purposes of
this article, however, we only need to be aware of the relationship between characteristics and anteced-
ent conditions.

18 This was first proved for a special case by Cauchy in 1842 and in full generality by Kowalewski in 1875.
The proof requires also that equation 2 be analytic and regular, though these further restrictions are not
important for our discussion here.

19 For the sake of simplicity, this article ignores many of the issues surrounding the lack of generality of
the result of the Cauchy–Kowalewski theorem about the relationship between characteristics and ante-
cedent data. Most significantly, there are well-known approaches to general relativity that involve null
(characteristic) antecedent data.

20 Cauchy problems that satisfy WP1 and WP2 but violate WP3 are called ill posed, and are invariably not
of the hyperbolic form. They are relatively rare in physical contexts. An example is the inverse gravi-
metric problem; see, for instance, (Rubinstein and Rubinstein [1998]).



Figure 2. Conoid characteristic surfaces in R3, with a Cauchy surface. The Cauchy sur-
face extends infinitely in all directions, and the characteristics are defined at every point
on the Cauchy surface.
Figure 1. Conoid characteristic surfaces inR3. The width of the cones is set by the value
of the constant c. For a continuous problem there are infinitely many of these surfaces,
with a vertex at each point of the manifold.
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anywhere to a characteristic, and that they do not intersect one another.21 This means

that the solution function to a hyperbolic PDE describes a set of trajectories, each of

which passes through a point on the Cauchy surface and propagates inside but not

outside the characteristic cone defined at that point.

A canonical example of a hyperbolic equation, which has all of the geometric

properties described above, is the wave equation:

o
m21

i

∂2u
∂xi2

2
1

c2
∂2u
∂xm2 5 f (x1, ::: , xm), (4)

for constant c.22 This equation informs about propagation of electromagnetic or

sound waves in directions that we have independent reasons to regard as temporal.

We can see that the second derivative of one of the independent variables, xm, is dis-

tinguished by its negative sign. In applications, xm is chosen to represent time, be-

cause this equation is used to describe dynamics, that is, time-evolution.

To summarize the results of this section, we require a clear asymmetry between

the hypersurface on which antecedent data are defined and the directions in which

solutions propagate, in order to define a well posed Cauchy problem. In physical ap-

plications, this means that Cauchy problems provide the most natural means for

modelling time evolution, provided the dynamics of the target system are relatively

simple and ‘well behaved’. For this reason, the Cauchy problem has become known

as the Initial Value Problem. So, Cauchy problems are informative in directions that

are naturally interpreted as time-like. This fact underwrites Callender’s formal argu-

ment for his TIP. However, the Cauchy problem is not the only type of problem of

physical relevance. This will be emphasized by the examples given in the following

two subsections. Their abilities to inform about the manifold of empirical events,

considered neutrally, will be compared in section 4.
3.2. Informative, non-temporal directions

This subsection presents a case where laws inform in non-temporal directions.

Dirichlet and Neumann problems are two different sorts of BVP that can be set

for second order linear PDEs of the form in equation 1 or its linearized form in equa-

tion 2. Dirichlet and Neumann boundary conditions are not of the correct form to

ensure the existence of unique solutions for hyperbolic equations, but they are for

parabolic and elliptic equations. PDEs of the parabolic type, like hyperbolic equa-

tions, inform in time-like directions, so we do not discuss them here. Elliptic PDEs,

however, do not single out a privileged set of directions, despite providing powerful

algorithms that are informative in many areas of physics. For correctly formed
21 There are less clear results for parabolic PDEs, but these are not the focus of the present work.
22 Regarding the status of the wave equation (and other PDEs) as laws: the wave equation is derived from

Hooke’s law, to use conventional terminology. However, what counts as a law and what doesn’t is not
our concern here.
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antecedent data, they satisfy criteria WP1–WP3 (despite these being originally expli-

cated in the context of Cauchy problems), thus meeting Callender’s standard of

informativeness.

A canonical example of an elliptic equation is the Poisson equation:

o
i

∂2u
∂xi2

5 f (x1, ::: , xm): (5)

This equation has many physical applications, for example, for finding the electric

potential for a given charge distribution.23 The form of this equation makes no dis-

tinction between spatial and temporal variables. Recall from the previous subsection

that elliptic equations have no real characteristics, so, as long as we are working in

real space, the Cauchy–Kowalewski theorem imposes no restrictions on where to de-

fine the antecedent data to ensure the existence of a unique solution. The form of the

antecedent data, however, is important. As mentioned, Cauchy data are either overly

restrictive or lead to instabilities for elliptic PDEs. Instead, we require either

Dirichlet or Neumann boundary conditions defined on a closed boundary surround-

ing the region of interest.

A Dirichlet boundary condition takes the following form:

BCD: u(x1, ::: , xm) 5 u0(x1, ::: , xm),

for xi ∈ dQ, where dQ is a closed surface or hypersurface. In other words, a Dirichlet

boundary condition gives the value of the solution on a closed boundary.

A Neumann boundary condition takes the following form:

BCN: v(x1, ::: , xm) ∂u
∂xi (x1, ::: , xm) 5 u0(x1, ::: , xm),

again for xi ∈ dQ, where dQ is a closed (hyper)surface. The function v defines a tan-

gent vector at each point on the boundary. So, a Neumann condition gives the direc-

tional derivative of the solution on a closed boundary. Usually, only one of these

types of boundary condition is required to solve an elliptic PDE such as the Poisson

equation. What elliptic equations do is take information (either the solution or its

directional derivative) on a closed boundary and ‘evolve’ it inwards or outwards

from that boundary. An illustration of the two-dimensional case is shown in figure 3.

For the three-dimensional case, imagine information on the surface of a soap bubble

propagating either outwards or inwards.

Elliptic equations can generate information in multiple directions simultaneously,

and there is no special in-built asymmetry between these directions and the boundary

on which the antecedent data are defined. Recall that elliptic PDEs have no real char-

acteristics and thus no restrictions on where in the domain this boundary can be, so no

particular set of directions is privileged by elliptic PDEs. We therefore have no reason
23 There are many well-known physical applications for other elliptic PDEs, for example, relating to en-
ergy functionals of fields defined over space and time, but the simple example of the Poisson equation is
given simply to illustrate the geometric properties of this sort of PDE.
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to regard the informative directions of an elliptic PDE as temporal. In general these

will not correspond to ‘time’ directions as measured by clocks.

Defining time as the set of directions in which laws generate the most information

leads to incompatibilities between the various ‘times’ emerging from different appli-

cations of elliptic PDEs, and between the ‘times’ arising from analyses of hyperbolic

and elliptic PDEs.24 Callender’s reasons for restricting attention to hyperbolic PDEs,

rather than giving up on TIP, are discussed in section 4. Next, we come to our second

set of counterexamples to TIP, which are not acknowledged by Callender.
3.3. Uninformative, temporal directions

This subsection details a different sort of counterexample to TIP, namely, chaotic dy-

namical systems, in which the directions that are ordinarily defined to be time are par-

ticularly uninformative. This type of example provides motivation for TAP, for the em-

piricist, because scientists and mathematicians working on the subject of chaos are

trying to develop methods for generating information in time-like directions, despite

the observed behaviour of the physical world making it especially difficult to do so.

Many physical systems are said to be unstable under perturbations of initial con-

ditions, or chaotic, where initial conditions are now understood to be measured val-

ues of ourm 2 1 independent variables, where xm 5 0. This is as opposed to any of

the antecedent functions u0 and u1 described in section 3.1 (AC1 and AC2), or either

of the u0s of section 3.2 (BCD or BCN).
25 The models now under consideration are
Figure 3. Closed boundary inR2 where Dirichlet or Neumann boundary conditions may
be defined. The elliptic PDE then evolves this information either outwards to fill the man-
ifold exterior to this region, or inwards to fill the interior of the boundary.
24 Here, ‘times’ refers to the set of directions that are maximally informative in each case, the point being
that for elliptic equations, there is an absurdity in defining time in this way, since it does not correlate
with any other more familiar definitions of time.

25 Technically speaking, Cauchy, Dirichlet, or Neumann problems whose solutions depend sensitively on
the antecedent conditions defined in the previous two subsections would also count as chaotic, but this
article aims to focus on the more empirically salient cases concerned with physical measurement.
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more directly related to empirical phenomena than the functional equations previ-

ously discussed, because they operate at a lower level of abstraction. What is meant

by instability here has to do with the way the variables x1, ... , xm are related according

to some function u, which may be (but is not necessarily) the solution to a Cauchy

problem. If the measured values of x1, ... , xm21 at xm 5 0 are perturbed slightly, giv-

ing say ~x1, ... , ~xm21, then the values of these variables at xm ≠ 0 will also differ from

one another, giving rise to two different functions u 5 u(x1, ::: , xm21, xm) and

~u 5 u(~x1, ::: , ~xm21, xm). For a dynamical system, these functions will map onto

two trajectories in an m 2 1-dimensional phase space, where each point on a trajec-

tory represents the full state of the system at some value of xm.

A dynamical system is chaotic if it is both deterministic, in the sense defined in

section 3.1, and exhibits sensitive dependence on initial conditions (SDIC). To ex-

hibit SDIC is to be unstable, in the sense that functions u and ũ will separate at an

exponential rate as xm varies uniformly. For this definition to make sense, we let xm
be identical in both functions, allowing it to naturally represent a time parameter.

This means that the distance between phase space trajectories arising from a function,

u, will grow exponentially with time. In practical applications, this leads to extreme in-

accuracies in predictions of measurement outcomes, since the dynamical equation am-

plifies errors in the initially measured data. The function, u, therefore does not provide

an empirically adequate description of the physical world outside of a very restricted

range of values of xm close to xm 5 0. That is, predictions about the future and re-

trodictions about the past based on these models are practically impossible. In these

cases, the asymmetry between the variables x1, ... , xm21 and xm, corresponding to space

and time variables respectively, arises from an asymmetry between what we have

empirical access to and what we do not. It is not the case that the direction of increas-

ing xm is informative; in fact, quite the opposite is the case.

There are many examples of chaotic systems to choose from to illustrate this

point. Unlike the linear PDEs we have been analysing so far, which can be grouped

into classes that share quantitative features, models of chaotic systems are rather het-

erogeneous in their mathematical form. What they share is the qualitative feature of

a combination of determinism and SDIC.26 The model presented here is one among

many, chosen for its simplicity and physical applicability. Its qualitative features,

shared by other chaotic models/systems, mean that the temporal dimension is par-

ticularly uninformative.27
26 For a comprehensive analysis of the various types of model that get called ‘chaotic’, see (Zuchowski [2017]).
Her work includes discussion of problems with defining chaos, and with trying to ascertain whether SDIC is
a feature of the model or the system. These more involved issues are not our concern here—we assume that
SDIC can arise in deterministic models (which are deterministic in the sense defined in sec. 3.1), and that it is
a feature of the target system as well as the model because it has empirical consequences.

27 The philosophical literature on chaos for the most part focuses on modelling problems, especially in
‘special sciences’, which are tangential to the concerns of the present work; see, for instance, (Werndl
[2009]; Frigg et al. [2014]; Zuchowski [2017]).
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TheLorenzmodel is a simplification of amodel of convection in fluids.28More spe-

cific details of this model than what are presented below are largely irrelevant; it must

be acknowledged only that the model (and others exhibiting SDIC) was empirically

motivated, and solutions can be reproduced experimentally. Other physical systems

whose dynamics exhibit SDIC (but which are not modelled by the Lorenz equations)

include many problems in celestial mechanics, acoustics, hydrodynamics, some quan-

tum scenarios and even quantum gravity. For classical cases, see, for example, (Berry

et al. [1987]; Ott [1993]; Palis and Takens [1993]; Diacu and Holmes [1996]) and for

the case of quantum gravity, see (Dittrich et al. [2017]).

This model is a well-known example of a simple chaotic model. It is a system of

ordinary differential equations as follows29:

dx

dt
5 2jx 1 jy, (6)
dy

dt
5 2xz 1 rx 2 y, (7)
dz

dt
5 xy 2 bz, (8)

where x is proportional to the intensity of convective motion, y is proportional to the

temperature difference between ascending and descending currents, and z is propor-

tional to the deviation of vertical temperature from linearity; j, r and b are constants;

and t is a time parameter. To connect to our earlier notation, let x1 5 x, x2 5 y, x3 5

z and x4 5 t. We are now playing a game different from Callender’s. Rather than

identifying the most informative directions and calling them ‘time’, we are looking

at physical equations with a time parameter already defined in order to investigate its

properties. Equations 6–8 each depend on instantaneous values of x, y and z, and

solutions give trajectories describing how these variables change over time. Initial

conditions for this system are just values of the three variables at t 5 0.

Depending on the values of the constants j, r and b, and depending on the initial

values of x, y and z, solutions of this system can vary dramatically as a result of slight

perturbations of initial data. This phenomenon can be quantified by calculating

Lyapunov exponents, which measure the rate of divergence between neighbouring

trajectories. To spell this out, the solutions u(x, y, z, t) and u(~x, ~y,~z, t) will diverge at

a rate of elt, where l > 0 is known as the Lyapunov exponent.30 An illustration of

this phenomenon is shown in figure 4.
28 For discussion of the physical applicability of the model, see, for example, (Lücke [1976]).
29 An ordinary differential equation can be thought of as a special case of a PDE, to connect this to our

earlier discussion of PDEs. Many chaotic models do consist of systems of PDEs but these tend to be
much more complicated; to present such an example here would distract from our main discussion.

30 Calculating Lyapunov exponents is just one widely used method for quantifying SDIC that is appropri-
ate in many contexts of physical interest, though not all.
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Mathematically, this is a consequence of the nonlinear terms in equations 7 and

8.31 For this reason, despite the equations having been designed to inform in time-like

directions, the information generated can be highly unstable. It may therefore be

completely inaccurate with respect to the empirical world because we never have

access to arbitrarily precise data through measurement. Approximate predictions

about empirical phenomena are generated through statistical analysis of many solu-

tions. This kind of analysis often involves identifying which sets of initial data lead

to stable solutions and which do not, rather than simply providing information about

what will be measured given one particular set of initial conditions. The empirically

adequate information that one can glean from a model of a chaotic system therefore

does not correspond to any direction or set of directions on the manifold.
Figure 4. Pair of chaotic trajectories in three-dimensional phase space: u(x, y, z, 0) is
depicted in light gray and u(~x, ~y,~z, 0) in dark gray. In practice, the two sets of initial val-
ues, (x1, y1, z1) and (~x1, ~y1, ~z1) may be arbitrarily close to one another.
31 More generally, chaos can arise in deterministic systems as the result of either non-linearity, or discontinu-
ity in the sense of violations of the condition WP3 defined in section 3.1. This second variety of chaos is
much less studied than the non-linear cases, and has been shown only to arise in systems with infinite-
dimensionalstate space. See (Kalmar-Nagy and Kiss [2017]) for an example.
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The next section explains in more detail why the above cases are counterexamples

to TIP, and why they suggest an alternative proposal, TAP.
4. Comparison

This section compares the informativeness (in Callender’s sense) of the models de-

scribed: hyperbolic PDEs are compared with elliptic PDEs in section 4.1, and with

chaotic systems in 4.2. In section 4.3, the positive proposal of this article, TAP, is

reiterated and compared with the reading of Callender’s argument put forward in

(Baron and Evans [2021]). Both are forms of perspectivalism, and can be made com-

patible with one another in the present case.

Callender’s argument for TIP relies on his focus on hyperbolic PDEs that sup-

port well-posed Cauchy problems. Once we restrict attention to PDEs of this form,

as shown in section 3.1, the set of directions that they inform over do indeed cor-

respond to time-like directions in physical applications. It is interesting to observe

how their geometric structure enables them to effectively inform over time-like direc-

tions, in their domains of applicability. Does this give us any reason to posit a general

connection between time and informative strength in physical laws? To answer po-

sitively to this question, as Callender does, requires some justification for restricting

attention to hyperbolic PDEs, and for taking them to be representative of physical

laws in general. Callender justifies this move by appealing to the theoretical virtue of

strength as informativeness, inspired by the BSA.

Recall that Callender ([2017], p. 143) stipulates that the ‘degree to which a theory

is informative is determined by how much of the world it manages to imply’. His

claim is then that hyperbolic PDEs with Cauchy data provide laws that are maximally

informative in this sense. Is this claim correct? The answer to this question depends on

what we consider ‘the world’ to refer to. Taking our empiricist principles seriously,

even in aminimal sense, requires that what wemean by ‘the world’ shouldmake some

contact with empirically accessed or accessible phenomena.
4.1. Hyperbolic versus elliptic PDEs

Callender uses the three criteria (labelled WP1, WP2 and WP3 in sec. 3.1) as a way of

making his notion of informativeness precise. AlthoughHadamard first outlined these

conditions in his work on the Cauchy problem (see Hadamard [2003], p. 40), it is not

the case that only well posed Cauchy problems meet them. They are sufficient condi-

tions for a Cauchy problem to be ‘well posed’, but it is not the case that any problem

that meets them is a well posed Cauchy problem. A Cauchy problem is defined by the

type of antecedent data prescribed for it, and the three conditions were added in order

to distinguish those Cauchy problems that are ‘well posed’ from those that are not.

What Callender has overlooked is the fact that elliptic PDEs such as the Poisson

equation, together with the correct sort of antecedent data such as Dirichlet or Neumann
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boundary conditions, also meet conditionsWP1,WP2, andWP3. That is, if such a prob-

lem is correctly formulated, there exist unique solutions for each set of antecedent data

that varies continuously with those data. What’s more, elliptic PDEs in general require

only one boundary condition for their solution, in contrast to hyperbolic PDEs which

require two. Considered in purely formal terms, then, elliptic PDEs are at least as infor-

mative as their hyperbolic cousins. That is, their ability to inform is at least equivalent,

provided we make no assumptions regarding the nature of the systems we wish to be

informed about.

Dirichlet or Neumann boundary value data are as empirically accessible as Cauchy

data.32 There is a sense in which all three kinds of data are mathematical idealizations,

and none of them are directly empirically accessible. Imagine for a moment the prac-

tical impossibility of making empirical measurements of some physical quantity on a

Cauchy surface. Cauchy surfaces are spatially unbounded and so to collect a complete

set of Cauchy data would require an infinite number of measurements. Measurement

is also itself a physical process, meaning that data take time to gather and we do not

ever have empirical access to every point on a Cauchy surface simultaneously. The

idea of an ‘initial’ function defined on a Cauchy surface, and the stark distinction be-

tween time and space built into the definition of this sort of problem, is part of the ide-

alization. In practice, symmetry principles are used so that the initial function can be

stipulated or found using an elliptic equation, as mentioned in section 3.2. It makes

little sense to compare the availability of initial and boundary data, since both involve

a high degree of idealization as well as empirical measurement. It also makes little

sense to compare how often each kind of problem appears in physical applications.33

Both kinds of problem appear in physics, both are used, and both bear some relation

to describing and predicting patterns in empirical data.

This point is not entirely ignored by Callender. Although he does not explicitly

compare their informativeness, he does briefly argue for the fundamentality of hy-

perbolic systems, mentioning that ‘Geroch (1996) writes, “elliptic and parabolic sys-

tems arise in all cases as mere approximations of hyperbolic systems”’. He goes on

to say that this point is ‘sometimes demonstrably correct: many equations not of [hy-

perbolic] form (8.1) can be derived from ones that are by taking limits or making

simplifying assumptions. The elliptic Poisson equation, for instance, is a truncation

of the linear hyperbolic Maxwell equations’ (Callender [2017], p. 165; emphasis

added). There arises here the obvious objection that a point that is only sometimes

demonstrably correct cannot be a suitable candidate for motivating a general claim,

especially given that the ‘sometimes’ in fact refers only to scalar theories. Gauge
32 I thank an anonymous referee for raising the issue of comparing the empirical accessibility of the dif-
ferent kinds of data.

33 It could be claimed, for example, that hyperbolic PDEs are more ‘typical’ in physical applications. It is not
clear how typicality should be judged in the present case: as typicality of use or of physical processes. In
either case, there is no measure over the space of PDEs in science, and so this sort of claim would require
further evidence if it is to be endorsed. I thank an anonymous referee for raising the issue of typicality.
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theories, including general relativity, have constraint equations built in, in the form

of elliptic equations, which must be solved in order to set the Cauchy problem.

The above point also relies on taking fundamentality to mean ‘non-approximate’,

when in fact there is no consensus in the literature about what this term means, even

in specific contexts.34 We are then faced with at least two options for how to read

‘non-approximate’. Callender’s analysis of the above quotation from Geroch suggests

a formal reading, where approximation is a particular kind of mathematical derivation.

This reading is antagonistic to our empiricist principles, because nomention is made of

fit to empirical data. Hyperbolic systems are not more exact (accurate or precise) than

elliptic systems in the sense of being closer approximations to what is measured in the

physical world.35 Callender’s reasoning is thus not sufficient to favour the Maxwell

equations over the Poisson equation, or to prefer hyperbolic over elliptic systems in

general. No argument is given for regarding hyperbolic systems as more informative

than elliptic systems. Neither can be considered in isolation as the best guide to inves-

tigating the role played by time in physical laws. They are simply used in different

ways, depending on the kind of information sought.

When comparing the informativeness of hyperbolic and elliptic systems, it is im-

portant to be aware of what it is we wish to be informed about. That is, our aims must

be acknowledged. If we wish to be informed about dynamics, an elliptic system will

not do. Given that the study of dynamics just is the study of processes evolving in

time, it is to be expected that the mathematical tools designed for this purpose dis-

tinguish time-like directions, as hyperbolic PDEs do.
4.2. Stable versus chaotic dynamical systems

Chaos is studied as a branch of dynamical systems theory, where the aim is to inform

in temporal directions. Chaotic dynamical systems are characterized by the fact that

this task is made particularly difficult by the behaviour of such systems. The point is

not to dwell on the metaphysics of laws, but simply to apply the principles of the

BSA. This means taking some set of physical phenomena and looking for the best

(strongest and simplest) methods for describing the observed regularities and for

making empirically relevant predictions.

As emphasized in section 3.3, the study of chaotic systems has empirical motiva-

tions. The goal is to develop the most effective methods for making empirical predic-

tions in time-like directions, a procedure that often involves a variety of techniques to

mitigate the instability. In general it is the case with these systems that reasonably ac-

curate predictions can be made only for short timescales, even when using our best
34 It is not the intention here to engage in discussion about what exactly is meant by ‘fundamental’. The
interested reader may refer to, for example, (Tahko [2018]) and references therein, and especially
(Crowther [2019]) for the case of physical theories. The issue is mentioned here only for the sake of
completeness, and readers may have in mind some basic intuitive notions of fundamentality.

35 This point also applies to chaotic systems, and will be returned to in section 4.2.
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predictive tools. Our best description of such a system should surely take this into ac-

count. So, if we seek the best description of some physical system exhibiting chaotic

behaviour, we see quite the opposite of Callender’s TIP. That is, the temporal direc-

tions about which we wish to be informed are especially uninformative.

The informativeness of hyperbolic PDE systems depends on the behaviour of the

target system—a hyperbolic system does not always faithfully encode the observed

dynamics. Temporal directions in well posed Cauchy problems have the potential to

be especially informative due to the way the problems have been designed. However,

they inform only about possible (non-actual) empirical phenomena unless the dynamics

of the target system are ‘well behaved’ in the sense of being non-chaotic. In other

cases, alternative methods (usually statistical) are used to try to make the best possible

empirical predictions, but it does not make sense to speak of ‘the direction(s) of infor-

mation propagation’when suchmethods are employed. The dynamical equations gen-

erate information over time, but this information is wildly inaccurate when compared to

empirical phenomena. The dynamical equations for such systems are also not at all sim-

ple, usually being characterized by non-linearity. Statistical analysis of phase portraits

is more informative in the sense of giving accurate information, but the information

generated is not temporally oriented. The non-temporally oriented statistical methods

also keep track of the regularities of chaotic systems, but these are generally ‘higher

level’ or ‘emergent’ regularities.36 The point is not exactly to decide which formal

methods count as laws, either ‘properly speaking’ or according to the BSA, but

to understand how we come to be informed about physical systems and the role time

plays.

Callender ([2017], p. 145) recognizes that ‘there is no guarantee that the best theory

will contain algorithms that permit such a nice time’, but claims that ‘nature must be

kind. So far, it has been’. Chaotic phenomena show that this claim is false: they are

cases where nature is not ‘kind’, where the best theories consist of amalgamations

of statistical methods that do not contain algorithms permitting a ‘nice time’. Informa-

tion in temporal directions is what is sought, but accurate and precise information

(in the sense of correctly corresponding to empirical data) is not what is found. The

existence of systems exhibiting such behaviour in the physical world, and recognition

of the great efforts made by mathematical physicists to generate at least approximate

short-term predictions in such cases, together motivate replacing TIP with TAP.

Objections to my argument from chaos may again appeal to the supposed fun-

damentality of hyperbolic systems, as well as the non-fundamentality of chaotic

systems. This objection would provide an alternative reason for favouring hyperbolic

over chaotic systems, despite their informativeness about the empirical world being
36 This is mentioned in relation to a point raised by an anonymous referee, who questioned whether the
formal methods presented count as laws. Laws, for the Humean, simply keep track of empirical regu-
larities. For the best systems theorist, they do so in the ‘best’ way. If the ‘best’ way of describing a cha-
otic system is not strong or simple enough to satisfy certain best systems theorists, they must admit that
there are empirical phenomena that exhibit some regularity but about which there are no laws.
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incomparable, thus supporting a weaker version of TIP on the grounds that the infor-

mative directions in our most fundamental laws are time-like. Taking ‘fundamental’

to mean either ‘non-approximate’ or ‘exact’, so long as we are empiricist and exact-

ness has something to do with fit to empirical data, means that it is simply not the

case that hyperbolic systems are more fundamental than chaotic ones.

If chaos were to arise only in complex systems where approximations to the

underlying dynamics are made, the objection to TAP from fundamentality, where

‘fundamental’ roughly means ‘exact’ or ‘non-approximate’, might carry some force.

However, there is no entailment in either direction between chaos and complexity,

and chaos often arises in systems that are not complex.37 The approximate statistical

methods mentioned in section 3.3 are used in the study of chaotic dynamical systems

to deal with the SDIC that is present in the more precise description. SDIC does not

arise as a result of approximation. This refutes the possible objection to the signif-

icance of chaotic systems based on their non-fundamentality, where ‘fundamental’ is

taken to mean ‘non-approximate’.

If ‘fundamental’were instead taken to refer to that which is described by putatively

fundamental theories, such as general relativity, quantum field theory or quantum grav-

ity, the objection that chaotic dynamics are non-fundamental still does not hold. As

maintained in (Dittrich et al. [2017], p. 554), ‘full general relativity is almost certainly

chaotic’. The same authors then go on to make the case that quantum gravity involves

chaotic dynamics. Of course these claims are controversial. The idea that general rel-

ativity should involve chaos in the form of non-linear equations has met with some re-

sistance, perhaps based largely on aesthetic concerns and stipulations of physical rea-

sonableness. However, as Wheeler ([1964]) pointed out, ‘it is no objection to the

physical reasonableness of general relativity to find that the equations are non-linear.

To argue that physics “does not like” non-linear equations is as futile as standing

under the roar of Niagara Falls and trying to reason away the hard reality of non-linear

hydrodynamics’. Regarding the quantum case, it is an established fact that chaotic

dynamics occur in quantum systems,38 although here the situation is not nearly as

straightforward as in the classical case described in section 3.3.

The discussion of fundamentality is somewhat tangential to our main discussion.

Empiricist principles commit us to take seriously the available empirical data, and this

alone does not involve prioritizing certain sets of data over others. The issue of

fundamentality is mentioned only to alleviate the potential concerns of those empiri-

cists who are also reductionists, who believe we should not be looking to ‘special sci-

ences’ to address metaphysical issues. Chaos is not only a ‘special science’ phenom-

enon, and so it should be taken into consideration in a thorough investigation into the

role played by time in physical theories.What this phenomenon demonstrates is a fail-

ure of our ability to predict, despite scientists’ best efforts. This failure is enforced by
37 For discussion of where chaos and complexity come apart, see, for instance, (Ladyman et al. [2013]).
38 For comprehensive treatments of the subject, with reference to experimental results, see (Haake [1991];

Stöckmann [2000]).
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the dynamical behaviour of the physical world. It shows that it is neither physics in

general, nor the behaviour of the physical world, that grants time its informative

strength in those special cases where temporal directions in laws successfully inform.

Rather, it is the way in which scientists construct laws, to provide the kind of infor-

mation that is sought, which is very often information about unknown, empirically in-

accessible temporal directions.
4.3. Two forms of perspectivalism

The arguments given in this article have been in support of the claim, referred to as

TAP, that the connection Callender makes between time and informative strength in

physical laws holds only relative to a particular set of aims and research interests.

This was demonstrated by the counterexamples presented. TAP can be viewed as

a perspectival reading of one of the central claims of Callender’s proposal, which

I have been referring to as TIP. The ‘perspective’ to which it is reduced is understood

to mean some collection of research perspectives. It is suggested that physics which

aims to make predictions in directions that are already understood to be ‘time’ will

have ‘time’ as the informative direction in its laws. When such laws do not generate

accurate and precise information due to the observed behaviour of the systems to

which they are applied, as is the case for chaotic systems, alternative techniques

are used to gain as much information as possible in ‘time’ directions.

The proposal put forward in (Baron and Evans [2021]) is a different sort of per-

spectival reading, where ‘perspective’ is understood as the epistemic perspectives of

some group of agents, in this case the human species, or ‘creatures like us’. Their

‘temporal perspectivalism’ is explicitly based on the ‘causal perspectivalism’ of

Price ([2005]). To explain what is meant by a perspectival claim, Price uses the ex-

ample of foreigners, reminding his readers that who is regarded as ‘foreign’ depends

on perspective. The people who are ‘foreign’ to Frenchmen are different from those

who are ‘foreign’ to Englishmen, but this does not mean that either party is incorrect

about their judgements. The same kind of analogy can be applied to the ways in

which physical laws are used to generate information. There will be ‘no-fault’ dis-

agreements about which directions are informative, depending on what kind of in-

formation is sought. There will also be potential ‘no-fault’ disagreements about

which directions are informative depending on the epistemic perspective, a hypoth-

esis that can be fleshed out more thoroughly by identifying what it is about a partic-

ular epistemic perspective that makes it suitable for gathering information along a

particular set of directions. The former, interest-relative, perspectivalism is what

has been referred to here as TAP. The latter is the species-relative perspectivalism

developed in (Baron and Evans [2021]), here applied to ‘informative directions’

rather than ‘time directions’ as in the original work. The two forms of perspectivalism

are compatible, when applied to the same claim, since epistemic perspectives and re-

search perspectives identified by aims and interests are not independent.
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5. Conclusion

Callender’s claim (TIP) is that our most informative models inform in time-like di-

rections. This article has proposed a modification to this claim (TAP), which says

instead that what is the most informative set of directions in the most informative

model depends on what we wish to be informed about, that is, on our aims. The

extent to which models geometrically distinguish time from space depends on the

extent to which we wish to be informed about processes evolving in time (dynam-

ics), where we have a host of independent reasons to regard this evolution as hap-

pening in time. This point is highlighted by consideration of elliptic systems, where

the aim is to find information in spatial directions and not to study dynamics.

The extent to which the ‘time’ directions in a model, designed with the aim of

informing over time, are in fact informative with respect to a physical system of

interest depends on the behaviour of that system. This is demonstrated by the case

of chaotic systems, where the aim is to study dynamics but the ‘time’ directions in

the models are uninformative. The empiricist principles Callender set out with

are particularly important with respect to this last point, because they force us to

think about informativeness in terms of correspondence of a theory or law with em-

pirical data. The proposal, TAP, should be understood as a fairly weak claim: sci-

entists often (but not always) wish to generate information in temporal directions.

Where the aim is to generate such information, and where the physical world be-

haves in such a way as to allow for such information to be generated (both are re-

quired), strong algorithms may be applied that, unsurprisingly, inform in temporal

directions.

These messages illustrate the more general problem that the actual achievements or

capabilities of science can sometimes fall short of its aims. Where some scientific dis-

cipline sets out to make accurate and precise empirical predictions, there always exists

the possibility of failure. In the case of chaotic systems, it remains to be seen whether

this is only a failure of our current best models to achieve the predictive aims, or an in

principle incapability of any model to make the kinds of predictions sought. The way

that the subject has been presented here suggests the latter interpretation, although this

will most likely depend on the particular system in question. Future developments in

the field may also turn out to demonstrate otherwise.

To return very briefly to the question of a philosophical underpinning for the var-

ious asymmetries between time and space, Callender’s account cannot succeed. This

article has pointed out the lack of generality of the key component of his account,

namely, the connection between time and informative strength in physical laws,

and suggested a perspectival reading of it. Recognizing that this claim cannot under-

pin the asymmetries between time and space, its metaphysical thrust consists in a re-

lationship between the world and information-gathering systems such as ourselves.

This article has pointed out that this relation only sometimes obtains, but that often

it is the objective of scientific inquiry to forge such a relation. Identifying when this
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relation obtains and when it doesn’t, and asking why it does or does not obtain in

these cases, would be interesting projects for deepening the analysis.
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