
7 Fictions, Representations, 
and Reality
Margaret Morrison

1. INTRODUCTION

There are many ways in which we use unrealistic representations for model-
ing the physical world. In some cases we construct models that we know to 
be false—but not false in the sense that they involve idealization or abstrac-
tion from real properties or situations; most models do this. Instead, they 
are considered false because they describe a situation that cannot, no mat-
ter how many corrections are added, be physically true of the phenomenon 
in question. Maxwell’s ether models are a case in point. No one understood 
or believed that the structure of the ether consisted of idle wheels and rotat-
ing vortices, yet those types of models were the foundation of Maxwell’s 
fi rst derivation of the electromagnetic fi eld equations.

Other instances of model building involve mathematical abstractions that 
are also not accurate representations of physical phenomena. For example, 
in his work on population genetics, R. A. Fisher (1918, 1922) assumed an 
analogy between populations of genes and the way that statistical mechanics 
models populations of molecules in a gas. These populations contained an 
infi nite number of genes that act independently of each other. His inspiration 
was the velocity distribution law, which gave results about pressure (among 
other things) from highly idealized assumptions about the molecular structure 
of a gas. This kind of abstraction (assuming infi nite populations of genes) was 
crucial in enabling Fisher to show that selection indeed operated in Mendelian 
populations.1 In situations like this where we have mathematical abstractions 
that are necessary for arriving at a certain result there is no question of relax-
ing or correcting the assumptions in the way we de-idealize cases like friction-
less planes and so on; the abstractions are what make the model work.

Another type of model or modeling assumption(s) that also resists cor-
rections is the type used to treat a specifi c kind of problem. Deviations from 
those particular situations typically do not involve corrections to the model’s 
assumptions but the introduction of a new model that describes the situa-
tion somewhat differently. For example, the typical Fisher–Wright model in 
modern population genetics assumes that generations are discrete—they do 
not overlap. However, if we want to examine changes in allele frequencies 
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when we have overlapping generations, we don’t simply add corrections or 
parameters to the discrete generation models; instead a different model is 
used (Moran model) for which parallels to the Fisher–Wright models can be 
drawn. A similar situation occurs in the case of nuclear models. The kinds 
of assumptions about nuclear structure required by the liquid drop model 
for explaining and predicting fi ssion are very different from those contained 
in the shell model for explaining magic numbers.2 These kinds of models 
may be fi ctional in a way that is similar to Maxwell’s ether models, but the 
important point is that they are not open to the addition of correction fac-
tors or de-idealization.

Finally, we have the relatively straightforward cases of idealization where 
a law or a model idealizes or leaves out a particular property but allows for 
the addition of correction factors that bring the model system closer (in rep-
resentational terms) to the physical system being modelled or described. The 
Hardy–Weinberg law is a good example of a case where violations of certain 
conditions, like random mating, may mean that the law fails to apply, but in 
other situations, depending on the type and degree of deviation from ideal-
ized conditions (e.g., no mutation), the law may continue to furnish reason-
ably accurate predictions. In other words, the population will continue to 
have Hardy-Weinberg proportions in each generation but the allele frequen-
cies will change with that condition. The simple pendulum is a familiar 
example where we know how to add correction factors that bring the model 
closer to concrete phenomena. The key in each of these cases is that we 
know how to manipulate the idealizations to get the outcomes we want.

Because each of the cases I have just mentioned has a different structure, 
the important question is whether they exemplify anything different about 
the way unrealistic representations yield reliable knowledge.3 I see this not 
as a logical problem of deriving true conclusions from false premises but 
rather an epistemic one that deals with the way false representations trans-
mit information about concrete cases.4 The latter is a problem that in some 
sense pervades many cases of knowledge acquisition to a greater or lesser 
extent—think of the use of metaphors in transmitting information. It is 
tempting to classify all of the examples just given as instances of fi ctional 
representation and then ask how fi ctions give us knowledge of real-world 
situations. I want to argue that this would be a mistake. The language 
of fi ctions is at once too broad and too narrow. Although it encompasses 
the fact that none of these representations is realistic, it fails to capture 
specifi cs of the relation that certain kinds of model-representations have 
to real systems. I claim that this is because the processes involved in both 
abstraction and idealization are not typically the same as those involved in 
constructing fi ctional models/representations. Introducing a mathematical 
abstraction that is necessary for obtaining certain results involves a dif-
ferent type of activity than constructing a model you know to be false in 
order to see whether certain analogies or similarities can be established. To 
simply classify all forms of nonaccurate description as fi ctions is to ignore 
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the different ways scientifi c representation is linked with explanation and 
understanding.

I want to address the problem of unrealistic representation by introduc-
ing a fi ner grained distinction that uses the notion of fi ctional representation 
to refer only to the kind of models that fall into the category occupied by 
Maxwell’s ether models. My reasons for doing so refl ect the practice behind 
the construction of these types of models. Fictional models are deliberately 
intended as imaginary accounts whose physical similarity to the target sys-
tem is not immediately obvious. Instead, one needs to examine the specifi c 
details of the model in order to establish the appropriate kinds of relations. 
Contrast this with the use of idealization where we have conditions that 
have been deliberately omitted or idealized (frictionless planes) in order to 
facilitate calculation or to illustrate a general principle for a simple case. 
Here we usually know immediately what the purported relation to the tar-
get system actually is.

In keeping with my rather narrow account of fi ctional representation, 
I want to also suggest a way of thinking about abstraction that differenti-
ates it from idealization in the following way: Where idealization distorts 
or omits properties that are often not necessary for the problem at hand, 
abstraction (typically mathematical in nature) introduces a specifi c type 
of representation that is not amenable to correction and is necessary for 
explanation/prediction of the target system. What is crucial about abstrac-
tion, characterized in this way, is that it highlights the fact that the process 
is not simply one of adding back and taking away as characterized in the 
literature; instead it shows how certain kinds of mathematical representa-
tions are essential for explaining/predicting concrete phenomena.5 Once 
again, my aim in distinguishing these different kinds of representation is to 
call attention to the fact that the notion of a ‘fi ction’ is not suffi ciently rich 
to capture the various ways that mathematical abstraction and idealization 
function in explanation and prediction.

So, what is it about the structure of each of these types of representation 
that makes them successful in a particular context? As I mentioned earlier, 
this isn’t a logical problem in that we aren’t so much concerned with the 
informational content or argument structure (that we can get true infor-
mation from false premises) but rather with the features of the representa-
tion that produces knowledge. For example, what aspects of populations 
characterized by the Hardy–Weinberg law account for the latter’s success in 
predicting genotype frequencies?6 Similarly, what was the essential feature 
in Maxwell’s ether model that led to the derivation of the fi eld equations? 
So, there are really two interrelated issues here: (1) How do fi ctional repre-
sentations provide reliable information, and (2) what is essentially different 
about the way that fi ctional models as opposed to abstraction and idealiza-
tion accomplish this? My intuition is that although I can draw some general 
conclusions about the differences between fi ctions, abstractions, and ideal-
izations, the answer to (1) will be a highly context-specifi c affair. That is, 
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the way a fi ctional model produces information will depend largely on the 
nature of the model itself and what we want it to do. That said, it is impor-
tant to recognize that there are stories to tell about how knowledge is pro-
duced in these cases that go beyond the simple appeal to heuristic power.

Let me begin by discussing some general issues related to fi ctions and fal-
sity and then go on to examine a case of a fi ctional model, an idealized law, 
and a mathematical abstraction in order to illustrate some of the differences 
among them and attempt to answer some of the questions just raised.

2. FABLES, FICTIONS, AND FACTS

One of the things that is especially puzzling about fi ctional scientifi c repre-
sentation is the relationship it bears to, say, literary fi ctions. Although the 
latter describe worlds that we know are not real, the intention, at least in 
more meritorious works of fi ction, is often to shed light on various aspects 
of our life in the real world. To that extent some kind of parallel relation-
ship exists between the two worlds that makes the fi ctional one capable 
of “touching”, in some sense, the real one. But what does this “touching” 
consist of? There are aspects of the fi ctional world that we take to be repre-
sentative of the real world but only because we can draw certain parallels or 
assume certain similarity relations hold. For example, many of the relation-
ships described in the novels of Simone de Beauvoir can be easily assimilated 
to her own experiences and life with Sartre. In other words, even though the 
characters are not real, the dynamic that exists between them may be an 
accurate depiction of the dynamic between real individuals.

But what about scientifi c fi ctions? There too we have a relationship 
between the real world and the world described by our models. We also 
want to understand certain features of those models as making some type 
of realistic claim about the world. So, although we sometimes trade in 
analogies or metaphors, the goal is to represent the world in as realistic a 
way as we are able or in as realistic a way that will facilitate calculation or 
understanding of some aspect of the target system. Sometimes the relation 
between the fi ctional and the real is understood in terms of the abstract and 
the concrete, where abstract entities or concepts are understood as fi ctional 
versions of concrete realistic entities. And, unlike the literary case, we don’t 
always understand the model, as a whole, to be a fi ctional entity; sometimes 
there are aspects of the model that are intended as realistic representations 
of the system we are interested in. The question, of course, is how exactly 
these models transmit reliable information about physical systems.

Nancy Cartwright (1999a), in a paper called “Fables and Models,” 
draws on the ideas of Lessing about the relationship between fables and 
morals as a way of shedding light on the relation between the abstract and 
the concrete. Lessing sees a fable as a way of providing a graspable, intui-
tive content for abstract symbolic judgements (the moral). Fables are like 
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fi ctions—they are stories that allegedly tell us something about the world 
we inhabit. The interesting thing about Lessing’s fables is that they aren’t 
allegories. Why is that? Because allegories function in terms of similar-
ity relations; they don’t have literal meaning and say something similar to 
what they seem to say. But, as Cartwright notes, for Lessing similarity is 
not the right relation to focus on. The relation between the moral and the 
fable is that of the general to the more specifi c; indeed, it is a misusage to 
say that the special bears a similarity to the general or that the individual 
has a similarity with its type. In more concrete terms, Lessing’s account of 
the relation between the fable and the moral is between the abstract sym-
bolic claim and its more concrete manifestation.

Cartwright claims that this mirrors what is going on in physics. We use 
abstract concepts that need “fi tting out” in a particular way using more 
concrete models; the laws of physics are like the morals and the models like 
the fables. It is because force is an abstract concept that it can only “exist 
in particular mechanical models” (1999a, p. 46). What she concludes is 
that the laws are true only of objects in the model in the way that the mor-
als are true of their fables; so, continuing on with Lessing’s analysis, we 
would say that the model is an instance of the law. In that sense the model 
is less abstract than the law; but what about the relation of the model to 
the world? Cartwright says she is inclined to think that even when models 
fi t “they do not fi t very exactly” (1999a, p. 48). This provides a context in 
which to understand Cartwright’s claim about how laws can be both false 
and have broad applicability. They are literally false about the world, yet 
the concrete models that instantiate them are what constrain their applica-
tion, and it is because the models also don’t have an exact fi t that they have 
such broad applicability.

But what exactly does this view entail when we move from the model to 
the world? If, as it seems to suggest, we can only talk about laws in the con-
text of the fi ctional world described by the model, then how do we connect 
the fi ctional model with the real world that we are interested in explaining/
predicting/describing? Should we understand reality as an instance of the 
model in the way that the model is an instance of the law, or do we need 
to invoke the similarity relation as a way of understanding why the model 
works in the way that it does? It isn’t clear to me how talking in terms of 
instances or appealing to the general/specifi c relation tells us much here. 
When we need to know the features of the model that are instantiated in 
the world, we are essentially asking how the model is similar to the world. 
In other words, when we want to know some facts about the world, we need 
to move beyond the relation of law to model to one of model and world. 
Understanding the model as a concrete instantiation of a law doesn’t guar-
antee that the model bears any similarity to the physical world. Maxwell’s 
initial ether model was an instantiation of laws of hydrodynamics, yet it 
was a highly fi ctional representation of the ether/electromagnetic fi eld. So, 
if our laws only say something about the world in virtue of the relation that 



Fictions, Representations, and Reality 115

the model bears to the world, the question becomes one of determining 
what, exactly, fi ctional models say about the world and the way in which 
they do it. The problem, however, is that if all models are fi ctions then we 
seem forced to conclude that science provides information about the world 
in the same way that novels do.

This characterization seems unhelpful, primarily because it fails to do jus-
tice to the way models are used in unearthing aspects of the world we want 
to understand. Put differently, we need to know the variety of ways models 
can represent the world if we are to have faith in those representations as 
sources of knowledge. To say force is an abstract concept that exists only in 
models leaves us with no insight about how to deal with physical forces that 
we encounter in the world. And, as I mentioned earlier, to characterize mod-
els generally as fi ctions doesn’t tell us much either. We need a fi ner grained 
distinction that will capture the various types of unrealistic representations 
that are used in model construction and how those representations function 
in an explanatory or predictive way. Fictional representation is just one type. 
In order to see how we might make sense of the idea that fi ctional models 
can provide us with information about the world, and how we can retrieve 
information directly from idealized laws/models and mathematical abstrac-
tions, let us look at some examples of how this happens.

3. FICTIONAL MECHANISMS YIELD ACCURATE 
PREDICTIONS: HOW THE MODEL PROVIDES INFORMATION

In the various stages of development of the electromagnetic theory, Max-
well used a variety of tools that included different forms of a fi ctional ether 
model as well as physical analogies. Each of these played an important 
role in developing both mathematical and physical ideas that were crucial 
to the formulation and conceptual understanding of fi eld theory. In order 
to appreciate exactly how a fi eld theory emerged from these fi ctional rep-
resentations, we need to start with Maxwell’s 1856 representation of Fara-
day’s electromagnetic theory in what he called a “mathematically precise 
yet visualizable form” (Maxwell, 1856; hereafter FL).7 The main idea in 
Faraday’s account was that the seat of electromagnetic phenomena was in 
the spaces surrounding wires and magnets, not in the objects themselves. 
He used iron fi lings to visualize the patterns of these forces in space, refer-
ring to the spatial distribution as lines of force that constituted a kind of 
fi eld. Electrical charges were conceived as epiphenomena that were mani-
festations of the termination points of the lines of force, and as such, they 
had no independent existence. On this picture the fi eld was primary with 
charges and currents emerging from it.

The method Maxwell employed involved both mathematical and physi-
cal analogies between stationary fi elds and the motion of an incompressible 
fl uid that fl owed through tubes (where the lines of force are represented by 
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the tubes). Using the formal equivalence between the equations of heat fl ow 
and action at a distance, Maxwell substituted the fl ow of the ideal fl uid 
for the distant action. Although the pressure in the tubes varied inversely 
as the distance from the source, the crucial difference was that the energy 
of the system was in the tubes rather than being transmitted at a distance. 
The direction of the tubes indicated the direction of the fl uid in the way 
that the lines of force indicated the direction and intensity of a current. 
Both the tubes and the lines of force satisfi ed the same partial differential 
equations. The purpose of the analogy was to illustrate the mathematical 
similarity of the laws, and although the fl uid was a purely fi ctional entity 
it provided a visual representation of this new fi eld theoretic approach to 
electromagnetism.

What Maxwell’s analogy did was furnish what he termed a physical 
“conception” for Faraday’s lines of force; a conception that involved a fi c-
tional representation, yet provided a mathematical account of electromag-
netic phenomena as envisioned on this fi eld theoretic picture. The method 
of physical analogy, as Maxwell referred to it, marked the beginning of 
what he saw as progressive stages of development in theory construction. 
Physical analogy was intended as a middle ground between a purely math-
ematical formula and a physical hypothesis. It was important as a visual 
representation because it enabled one to see electromagnetic phenomena 
in a new way. Although the analogy did provide a model (in some sense), 
it was merely a descriptive account of the distribution of the lines in space 
with no mechanism for understanding the forces of attraction and repul-
sion between magnetic poles.

A physical account of how the behavior of magnetic lines could give rise 
to magnetic forces was further developed in a paper entitled “On Physical 
Lines of Force” (Maxwell, 1861–1862; hereafter PL). The paper marked 
the beginnings of his famous ether model, which described the magnetic 
fi eld in terms of the rotation of the ether around the lines of force. The 
idea of a rotating ether was fi rst put forward by Kelvin, who explained the 
Faraday effect (the rotation of the plane of polarized light by magnets) as a 
result of the rotation of molecular vortices in a fl uid ether. In order to allow 
for the rotation of the adjacent vortices, the forces that caused the motion 
of the medium and the occurrence of electric currents, the model consisted 
of layers of rolling particles between the vortices. The forces exerted by 
the vortices on these particles were the cause of electromotive force, with 
changes in their motion corresponding to electromagnetic induction. That 
Maxwell thought of this as a purely fi ctional representation is obvious from 
the following quotation:

The conception of a particle having its motion connected with that of a 
vortex by perfect rolling contact may appear somewhat awkward. I do 
not bring it forward as a connexion existing in nature, or even as that 
which one would willingly assent to as an electrical hypothesis. It is, 
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however, a mode of connexion which is mechanically conceivable, and 
easily investigated. (Maxwell, 1965, vol. 1, p. 486)

One of the problems with the fl uid vortex model was how to mechani-
cally explain the transmission of rotation from the exterior to the interior 
parts of each cell. How could a fl uid surface exert tangential forces on 
the particles? In order to remedy this and extend the model to electrostat-
ics Maxwell developed an elastic solid model made up of spherical cells 
endowed with elasticity which made the medium capable of sustaining elas-
tic waves. In addition, the wave theory of light was based on the notion of 
an elastic medium that could account for transverse vibrations; hence it 
was quite possible that the electromagnetic medium might possess the same 
property. The fl uid vortices had uniform angular velocity and rotated as a 
rigid sphere, but elastic vortices would produce the deformations and dis-
placements in the medium that needed to be incorporated. With this elas-
ticized medium Maxwell now needed to explain the condition of a body 
with respect to the surrounding medium when it is said to be charged with 
electricity and to account for the forces acting between electrical bodies.

According to the Faraday picture, electric lines of force were primary 
and electric charge was simply a manifestation of the terminating points 
on the lines of force. If charge was to be identifi ed with the accumula-
tion of particles in some portion of the medium, then it was necessary to 
have some way of representing that. In other words, how is it possible to 
represent charge as existing in a fi eld? In the case of a charged capacitor 
with dielectric material between the plates, the dielectric material itself was 

Figure 7.1 Maxwell’s vortex ether model. AB is a cur-
rent of electricity, with the large spaces representing 
the vortices and the smaller circles the idle wheels.
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the primary seat of the “inductive” state and the plates served merely as 
bounding surfaces where the chain of polarized particles was terminated. 
So, what is taken to be the charge on a conductor is nothing but the appar-
ent surface charge of the adjacent dielectric medium.

The elastic vortices that constituted the ether or medium were separated 
by electric particles whose action on the vortex cells resulted in a type of 
distortion. In other words, the effect of an electromotive force (the tangen-
tial force with which the particles are pressed by the matter of the cells) is 
represented as a distortion of the cells caused by a change in position of the 
electric particles. That, in turn, gave rise to an elastic force that set off a 
chain reaction. Maxwell saw the cell distortion as a displacement of elec-
tricity within each molecule, with the total effect over the entire medium 
producing a “general displacement of electricity in a given direction” (1965, 
vol. 1, p. 491). Understood literally, the notion of displacement meant that 
the elements of the dielectric had changed positions. And, because changes 
in displacement involved a motion of electricity Maxwell argued that they 
should be “treated as” currents in the positive or negative direction accord-
ing to whether displacement was increasing or diminishing. Displacement 
also served as a model for dielectric polarization—electromotive force was 
responsible for distorting the cells and its action on the dielectric produced 
a state of polarization. From this we can get some sense of just how com-
plex the model really was and how, despite its fi ctional status, its various 
intricacies provided a representation of important features of the electro-
magnetic fi eld. But most important was how this account of the displace-
ment current(s) furnished the appropriate mathematical representation that 
would give rise to the fi eld equations.

In the original version of the ether model displacement was calculated 
only in terms of the rotation of the vortices without any distortion, but in 
the elastic model displacement made an additional contribution to the elec-
tric current. In order to show how the transmission of electricity was pos-
sible in a medium, a modifi cation of Ampere’s law was required in order to 
generalize it to the case of open circuits. What is important here, however, 
is not the modifi cation of Ampere’s law per se but rather the way in which 
the model informed that modifi cation. If we think for a moment about 
what Maxwell was trying to achieve, namely, a fi eld theoretic representa-
tion of electromagnetism, then it becomes obvious that some way of treat-
ing open circuits and representing charges and currents as emerging from 
the fi eld rather than material sources is crucial.

To achieve that end two important elements were required. The fi rst 
concerns the motion of idle wheels that represented electricity as governed 
by Ampere’s law relating electric fl ux and magnetic intensity (curl H = 
4ϖJ, where H is the magnetic fi eld and J is the electric-current density). A 
consequence of that law was that it failed to provide a mechanism for the 
accumulation of charge because it applied only in the case of closed cur-
rents. Consequently a term ∂D/∂t had to be added to the current so that it 
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was no longer circuital. As we saw earlier, and from the diagram in Figure 
7.2, the dielectric between the coatings of a condenser fulfi lled that need 
and was seen as the origin of the displacement current. The force of that 
current was seen as proportional to the rate of increase of the electric force 
in the dielectric and hence produced the same magnetic effects as a true 
current. Hence the charged current could be “regarded as” fl owing in a 
closed circuit.8 The modifi ed term in Ampere’s law took the value zero for 
the case of steady currents fl owing in closed circuits and nonzero values for 
open circuits, thereby giving defi nite predictions for their magnetic effects.

But, as I noted earlier, there was a second feature concerning the 
account of displacement, namely, how the representation of electric cur-
rent qua elastic restoring force (a crucial feature of the model) was used 
to represent open circuits. According to the mechanics of the model, the 
rotations push the small particles along giving rise to a current of mag-
nitude 1/4ϖ curl H while the elastic distortions move the particles in 
the direction of the distortion, adding another contribution ∂D/∂t to the 
current.9 Maxwell had linked the equation describing displacement (R 
= -4ϖE2h) with the ether’s elasticity (modeled on Hooke’s law) and also 
with an electrical equation representing the fl ow of charge produced by 
electromotive force. Hence R was interpreted as both an electromotive 
force in the direction of displacement and an elastic restoring force in the 
opposite direction. Similarly, the dielectric constant E is both an elastic 
coeffi cient and an electric constant, and h represents both charge per unit 
area and linear displacement. As a result, the equation served as a kind 
of bridge between the mechanical and electrical parts of the model. The 
electrical part included the introduction of the displacement current, the 
calculation of a numerical value for E (a coeffi cient that depended on the 
nature of the dielectric), and the derivation of the equations describing 
the quantity of displacement of an electric current per unit area. The 
mechanical part required that E represent an elastic force capable of alter-
ing the structure of the ether. The point that concerns us here, though, is 
exactly how the mechanical features of the model gave rise to electrical 
effects: that is, the relation between the mechanical distortion of the ether 
and the displacement current.

Figure 7.2 The displacement term ∂D/∂t modifi ed the original Ampere 
law where D = (1/c2)E + 4ϖP (the polarization vector).
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The answer lies in seeing how Maxwell’s model represented the primacy 
of the fi eld. As Seigel (1991, p. 99) points out, in Maxwell’s equation of 
electric currents the curl H term (the magnetic fi eld) appears on the right 
side with the electric current J on the left as the quantity to be calculated.

J = 1/4ϖ (curl H—1/c2 ∂E/∂t)

To illustrate how this works mechanically, consider the following example: 
If we take a charging capacitor there is a growing electric fi eld pointing 
from positive to negative in the space between the plates. This is the cur-
rent owing to the solenoidal, closed loop curl H term. However, associated 
with this fi eld there is a reverse polarization (Figure 7.3) due to the elastic 
deformation of the vortices acting on the particles. This gives rise to a 
reverse current between the plates that cancels the curl H term. This is 
because it is negative and points toward the positive plate as the capacitor 
is charging. The solenoidal term is incapable of producing accumulations 
of charge, so it is the reverse polarization that gives rise to charge on the 
capacitor plates and not vice versa. It is the constraint on the motion of the 
particles that reacts back as a constraint on the motion of the vortices that 
drives the elastic distortion of the vortices in the opposite direction. As a 
result, charge builds up through the progressive distortion of the medium. 
This elastic distortion is accompanied by a pattern of elastic restoring 
forces that correspond to the electric fi eld E. Without this there would be 
no charge because it is responsible for relaxing the solenoidal property of 
the electric current.

We can now state the relation between charge and the fi eld: Charge is 
the center of elastic deformation that gives rise to a pattern of electromo-
tive forces, which constitutes the fi eld—the energy of deformation is the 
electric fi eld energy. Put simply, it is the fi elds that give rise to charges and 
currents. The magnetic fi eld gives rise to the solenoidal in both the wire 
and space between the plates and the changing electric fi eld gives rise to 

Figure 7.3 The reverse (polarization) current term has a negative sign, 
which cancels the curl H term between the plates.
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a reverse current in the space between the plates. The sum of these two cur-
rents yields the conduction current J—an open circuit for the true current.

What this shows is how a completely fi ctional model provided an account 
of how electromagnetic forces could be produced in a mechanical ether. 
But, more signifi cantly, it furnished the all important fi eld theoretic pic-
ture that would become the basis for the modern account we have today. 
Once the displacement current secured the basis for a fi eld theory, it was 
in some sense a rather small step to construct the electromechanical the-
ory of light. I say electromechanical because this particular model didn’t 
identify light with electromagnetic waves; rather, it was hypothesized that 
both originated from the same medium or fi eld. Instead of approaching 
the problem as a mathematical one and obtaining solutions for the equa-
tions for the E or H fi elds in the form of transverse electromagnetic waves, 
the model occupied center stage with the mathematical account emerging 
from the model.

Very briefl y, the rest of the 1861–1862 story goes something like this.10 
The velocity of propagation (V) of transverse torsion waves in the medium 
was given by the torsion modulus m, an elastic constant that controls the 
strength of the electric forces, divided by the mass density of the medium 
ρ

M
 which controls the strength of magnetic forces. Maxwell set the values 

of these parameters through a chain of linkages between the mechanical, 
electrical, and magnetic aspects of the model, which resulted in V = c where 
c is the ratio of units—a measure of the relative strengths of electrostatic 
forces and electromagnetic forces. This ratio of electric to magnetic units 
depended on a quantity that had the dimensions of a velocity. There were 
fi ve different methods for determining that velocity and using these experi-
mental results Maxwell obtained a value for c that was very close to the 
velocity of light. Consequently the velocity of waves in the magnetoelectric 
medium was also roughly equivalent to the velocity of light.11 But, and 
this is the important point, the rationale for setting the parameters to the 
values Maxwell chose, together with the equivalence between V and the 
ratio of units, followed directly from the mechanical and electromagnetic 
connections that emerged from the model. In some sense the model, like an 
experimental novel, had played out its own story; the succession of facts 
depended on the constraints imposed by the phenomena themselves via 
their place in the model.12

The problem of course was that no one, especially Maxwell, thought 
this model was anything but an elaborate fi ction. But because the numeri-
cal relations between the optical and electromagnetic phenomena were too 
spectacular to ignore, he needed some way of showing that the existence 
of electromagnetic waves propagating with velocity c followed from elec-
trical equations themselves, divorced from the mechanical underpinnings 
of the model. The answer came in 1865 via a purely dynamical theory 
and the introduction of electromagnetic variables into the equations of 
dynamics. However, with the abandonment of the mechanical model he 
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also, and perhaps most importantly, needed a different justifi cation for 
introducing displacement into his equations, for without it there was liter-
ally no fi eld theory.

A number of assumptions made this possible. Based on facts about 
light he assumed that space or the ether must be capable of storing up 
energy, and from the forms of the equations of electricity and magnetism he 
showed the forms that energy must have if it is disseminated through space. 
If the medium is subject to dynamical principles then it will be governed 
by Lagrange’s equations, and if we apply dynamics to electromagnetism we 
can substitute magnetic and electric energy for kinetic and potential energy. 
According to the Faraday–Mossotti theory of dielectrics, when a potential 
difference is applied across a dielectric it becomes polarized—molecules 
are positive at one end and negative at the other. This entails not only 
that electric energy is stored in the dielectric but that a transient electric 
current fl ows in it. If one assumed that space can store up energy it could 
also become polarized by a potential difference, and a changing potential 
difference would thereby produce a changing current (displacement) asso-
ciated with a changing magnetic fi eld. Once the displacement current was 
introduced Maxwell was able to deduce the properties of electromagnetic 
waves that accounted for light.

All of this was done in a paper entitled “A Dynamical Theory of the 
Electromagnetic Field.” Of course, this is not to say that the new “dynam-
ical theory” was without problems. Because there was no mechanical 
model it became diffi cult to conceive how exactly displacement operated. 
If electricity was being displaced, how did this occur? The problem was 
magnifi ed because charge was interpreted as a discontinuity in displace-
ment. And although displacement appears in the fundamental equations, 
divorced from its mechanical foundation, electromagnetism takes on the 
appearance of a phenomenological theory.13 The continuation of this story 
and the efforts to unite mechanics and electromagnetism is both long and 
rather complicated.14 Although it has interesting implications for debates 
about the relationship between fi ctional representations, mathematical 
representations, and concrete knowledge, those are not issues I can ade-
quately deal with here. Instead I want to conclude this section by focusing 
on the problem I raised at the beginning, namely, what specifi c features 
can we isolate as playing a role in the transmission of information from 
fi ctional models?

What is the sense of representation that is important here and how does 
it emerge from the fi ctional model? What is especially signifi cant is that 
the development of the fi eld equations did not proceed through the intro-
duction of a new term called the displacement current as a mathemati-
cal modifi cation to Ampere’s law. Instead, what I tried to show is how 
the foundation for electromagnetism emerged from the molecular vortex 
model and was in fact determined by it. But the important issue here is 
not that Maxwell was capable of deriving a set of fi eld equations from a 
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false model, but rather what it was about the model that underscored the 
applicability of the equations. Put differently, what was the conceptual or 
theoretical content represented in the model that formed the basis for his 
electromagnetic worldview?

The answer centers, of course, on the displacement current. Maxwell 
knew that the ether or fi eld did not consist of rotating vortices and idle 
wheels, but he also knew that in order to represent the Faraday picture of 
electromagnetism there had to be some account of how electricity could 
travel in free space and charge could be build up without material bodies. 
Consequently, he needed a way of representing this mechanically if he was 
to derive a set of equations applicable to this new fi eld theoretic picture. 
The mechanical model became the focal point for an understanding of how 
charges and currents could be understood as fi eld theoretic phenomena 
and the formulation of a mathematical account of those processes. Part 
of that account involved a modifi cation of the relation between between 
Ampere’s law, Coulomb’s law, and the equation of continuity for open cir-
cuits, something that was indicated by the structure of the model. Once 
the basic mechanical features of the model were in place they constrained 
both the physical and mathematical descriptions of electromagnetic forces. 
In the same way that character development in a novel determines, to some 
extent, how the story will play out, the features of the model restrict the 
way that certain physical relations can be represented. By the time the Trea-
tise on Electricity and Magnetism was completed in 1873, displacement 
had taken on the role of a primary current responsible for the transmission 
of electricity through space. Although the mature theory was an extension 
of the dynamical approach, neither would have been possible without the 
fi ctional model that provided a physical conception of how an electromag-
netic fi eld theory might be possible.

What this extended discussion hopefully shows is not only how cer-
tain information emerged from the fi ctional model but also the need for 
examining the model in detail in order to show exactly how this happens. 
Although I have only addressed one example here, the point I want to make 
is a general one concerning fi ctional models. To say that fi ctional models 
are important sources of knowledge in virtue of a particular kind of simi-
larity that they bear to concrete cases or systems is to say virtually nothing 
about how they do that. Instead, what is required is a careful analysis of 
the model itself to uncover the kind of information it yields and the ways in 
which that information can be used to develop physical hypotheses. There 
are various ways that fi ctional models may be able to accomplish this, but 
each one will do so in a way that is specifi c to that particular model. The sit-
uation is radically different from the case of idealization where an analysis 
of the methods employed for both the idealizing process and its corrections 
will typically cover a variety of different cases. Consequently, idealization 
becomes a relatively easy category to defi ne, but it still presents some chal-
lenges for uncovering how idealized models relate to real systems.
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4. FROM THE IDEAL TO THE CONCRETE

So, how exactly does the fi ctional case differ from an idealized law/model 
where there are specifi c unrealistic conditions required for the law to hold, 
conditions that are false but nevertheless capable of approximating real 
physical systems? The Hardy–Weinberg law is a simple example of a funda-
mental law that makes assumptions not realized in any natural population. 
In what sense do we want to say that this law provides us with information 
about these populations? One of the things that renders laws explanatory, 
as highlighted by the D-N model, is the fact that they are general enough 
to apply to a diverse number of phenomena. In other words, they enable us 
to understand specifi c features of phenomena as similar in certain respects; 
for example, universal gravitation shows that both terrestrial and celestial 
bodies obey an inverse square force law. Nancy Cartwright (1983) claims 
that this generality is a reason for thinking fundamental laws like these 
are false; their generality results in their being unable to fully describe the 
situations they reportedly cover, or they deliberately omit aspects of the 
situation that are not relevant for the calculation at hand. In that sense they 
don’t accurately describe concrete situations and are true only of objects in 
our models. The problem then is how could they possibly provide knowl-
edge of concrete physical systems, or in this case, populations?

Part of Cartwright’s reason for claiming that covering laws are false is to 
contrast them with phenomenological laws (or models) that supposedly do 
give us more accurate descriptions of the physical world. However, what the 
Hardy–Weinberg law shows is that embedded in what Cartwright would 
call a ‘false’ law is a great deal of accurate information about biological 
populations, information that was crucial in the synthesis of Mendelian 
heredity and Darwinian natural selection. To that extent it serves as an 
example of how mathematical idealization (and abstraction) can enhance 
our understanding far beyond simple predictive capabilities.15 As we shall 
see later in this chapter, the Hardy–Weinberg law enables us to understand 
fundamental features of heredity and variation by establishing a mathemat-
ical relation between allele and genotype frequencies that embodies the very 
gene conserving structure that is the essential feature of Mendelism. What 
is important for my purposes here is to show why the unrealistic nature of 
its assumptions does not affect the signifi cance of either the conclusions it 
provides or the information implicit in its formulation. Moreover, it is a 
nice example of the differences I want to highlight between idealization and 
the account of abstraction I described in the introduction.

The Hardy–Weinberg law is often described as a consequence of Men-
del’s law of segregation, or a generalization of Mendel’s laws as applied to 
populations. It relates allele or gene frequencies to genotype frequencies 
and states that in an infi nite, random mating population in the absence 
of external factors such as mutation, selection, drift, and migration, one 
generation of random mating will produce a distribution of genotypes that 
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is a function solely of allele frequencies. Moreover, this distribution does 
not change over subsequent generations, provided all conditions are held 
constant. In other words, if we have a pair of alleles Aa at a particular 
gene locus and the initial ratio of A to a is p to q, then for every succeed-
ing generation the ratio will be p to q. Regardless of the distribution of 
genotypes in the initial generation the distribution for all succeeding gen-
erations will be

p2A1A1 + 2pqA1A2 + q2A2A2

where p2 is just the probability of getting an A1A1 homozygote, which is 
the probability that the egg is A1 times the probability that the sperm is 
A1 (by the product rule for independent events). Both of these probabili-
ties are p because in its simplest form the law assumes that the species is 
hermaphroditic. Because the heterozygote can be formed in two different 
ways the probability is 2pq (by the addition rule for mutually exclusive 
events). So, if you know the value for p then you know the frequencies of 
all three genotypes.

Because random mating does not change allele frequencies, all one needs 
to calculate the genotype frequencies after a round of random mating is 
the allele frequencies before random mating. In populations where each 
individual is either male or female with different allele frequencies it will 
take two generations to reach Hardy–Weinberg equilibrium. One can see 
then the relation between the stability of the frequencies and Mendel’s law 
of segregation. With random cross-fertilization there is no disappearance of 
any class whatever in the offspring of the hybrids, and each class continues 
to be produced in the same proportion.16

But, and here is the important point, what is signifi cant about the Hardy–
Weinberg law is not so much the binomial form of the genotype frequency 
and the prediction of genotypes based on the stability of the population, 
but rather what the stability actually shows or presupposes. Despite the 
idealizing assumptions, the stability allows us to understand something 
about Mendelian populations that is signifi cant for understanding heredity 
and variation. In other words, certain conditions must be present for the 
stability to be possible. Thus, the predictive success of the law is intimately 
connected with certain basic claims about genetic structure that are pre-
supposed in its formulation. What the Hardy–Weinberg law says is that if 
no external forces act, then there is no intrinsic tendency for the variation 
caused by the three different genotypes that exist in a population to disap-
pear. It also shows that because the distribution of genotype frequencies 
is independent of dominance, dominance alone cannot change genotype 
frequencies. In other words, there is no evidence that a dominant character 
will show a tendency to spread or a recessive one to die out. Instead, the 
genotype frequencies are maintained in constant proportions. The probabi-
listic genetic structure is conserved indefi nitely; but should it be infl uenced 
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by an outside force, such as mutation, the effect would be preserved in a 
new stable distribution in the succeeding generation.

This was crucial for understanding the problems with blending inheri-
tance as advocated by the Darwinians, and to that extent the claim that 
the law is false in some sense misses the point if our concern is conveying 
information. Under blending inheritance, variation was thought to decrease 
rapidly with each successive generation, but Hardy–Weinberg shows that 
under a Mendelian scheme it is maintained. This pointed to yet another 
fundamental aspect of Mendelism, namely, the discontinuous nature of the 
gene, and why it was crucial for the preservation of variation required for 
selection. How was it possible for the genetic structure to be maintained 
over successive generations? The reason for the stability could be traced 
directly to the absence of fusion, which was indicative of a type of genetic 
structure that could conserve modifi cation. This condition was explicitly 
presupposed in the way the law was formulated and how it functioned.17 In 
that sense one can see the Hardy–Weinberg (H-W) law as the beginning of 
a completely new explanation of the role of mutation and selection and how 
they affect our understanding of evolution.

What I have focused on thus far has been the information about the 
nature of heredity that is embedded or presupposed in the structure of this 
law. But what about the so-called “falsity” of the assumptions under which 
it is alleged to hold? Although the “model population” specifi ed by the 
H-W law bears little, if any, relation to actual human populations, we saw 
that the law was an important source of theoretical information. What 
happens when assumptions like random mating and infi nite populations 
are replaced with more realistic assumptions true of actual populations, 
assumptions like assortative mating and small populations? Although there 
are many forms of nonrandom mating, what is crucial from the point of view 
of “unrealistic assumptions” is that in many cases it is possible to show that 
given a parental and daughter generation allele frequencies remain the same 
in each generation; hence genetic variation is maintained—the fundamen-
tal conclusion of the H-W law. However, because heterozygote frequency 
is less than that applying in random mating populations, the variation is 
in some sense cryptic; that is, you get the same allele frequencies but dif-
ferent genotype frequencies. But after one generation of random mating, 
the H-W genotype frequencies would be immediately restored. Similarly, 
in the case of infi nite populations, once we relax this assumption we fi nd 
that mean heterozygosity decreases very slowly with time as a result of the 
sampling drift implicit in the process. This slow loss can be understood as 
the stochastic analogue of the “variation-preserving” property of infi nite 
populations described by H-W. Although a violation of these conditions 
destroys H-W equilibrium, we nevertheless learn some useful information 
about the population.

Appealing to the abstraction/idealization distinction I introduced at the 
beginning can further clarify our understanding of how deviations from 
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the conditions or assumptions specifi ed by the law affect its applicability. 
Essentially we can divide the assumptions associated with the Hardy–Wein-
berg law into two groups. The fi rst involves assumptions that don’t allow 
for relaxation without violating H-W equilibrium, such as infi nite popula-
tion size and random mating. The second includes the absence of selection, 
migration, and mutation. These assumptions affect allele frequencies but 
not random mating. For example, selection may be taking place in a popula-
tion that is nevertheless breeding randomly. Violations of these latter condi-
tions will not rule out H-W proportions; instead, the allele frequencies will 
change in accordance with the changing conditions. In other words, these 
conditions function as idealizations that may or may not hold but whose 
effect on the system can be straightforwardly calculated. Put differently, we 
can think of them as external factors that isolate basic features of a Mende-
lian system that allow us to understand how variation could be conserved.

Contrast that situation with the requirements of infi nite populations and 
random mating. Infi nite populations are crucial in that one must be able 
to rule out genetic drift, which is a change in gene frequencies that results 
from chance deviation from expected genotypic frequencies. That is, we 
must be able to determine that detected changes are not due to sampling 
errors. Although random mating seems like the kind of restriction that is 
typically violated, we can see how its violations affect gene frequencies: In 
the case of assortative mating there will be an increase in homozygosity for 
those genes involved in the trait that is preferential such as height or eye 
color. Traits such as blood type are typically randomly mated. Similarly, 
in the case of inbreeding there will be an increase in homozygosity for all 
genes. Because both of these assumptions are necessary for H-W equilib-
rium, they cannot, in general, be corrected for and in that sense are neces-
sary features for the applicability of the law. In other words, they ought to 
be considered abstractions rather than idealizations because they describe 
situations that cannot approximate real-world situations through the addi-
tion of correction factors.18

My account of abstraction is somewhat different from that typically 
described in the literature. Although abstraction and idealization are some-
times confl ated, Cartwright (1989) has distinguished them in the follow-
ing way: Idealization is a process where one starts with a concrete object 
and then mentally rearranges some of its (inconvenient) features or prop-
erties. This enables us to write down a law describing its behavior in cer-
tain circumstances. In some cases it is possible to just omit factors that 
are irrelevant to the problem, but for the factors that are relevant they are 
sometimes given values that are not, strictly speaking, accurate but allow 
for ease of calculation. The idealizations presupposed by the ideal gas law 
are an example (infi nitesimal size of molecules and absence of intermo-
lecular forces). In these cases we sometimes know the degree to which the 
idealization is a departure from the real situation and if necessary its effect 
can be estimated.
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Abstraction presents a different scenario; here what Cartwright calls 
the “relevant features” have been genuinely subtracted. The example she 
uses to illustrate the point is the comparison between a law and a model. 
Many of the effects studied in modern physics make a very small contribu-
tion to the total behavior of a system and hence the laws governing these 
systems do not really approximate, in any real sense, what happens in con-
crete cases. These laws are instances of abstractions. The model, on the 
other hand, takes the relevant factors and assigns them convenient values 
in order to facilitate calculation. Although the latter may be unrealistic in 
the sense that it gives an idealized representation of particular properties, it 
still makes contact with the world insofar as it includes properties that are 
relevant to the system’s behavior. Abstract laws do not literally describe the 
behavior of real systems because (1) they subtract features in order to focus 
on a single set of properties or laws as if they were considered in isolation 
and (2) no amount of theory will ever allow us to complete the process of 
concretization. Laws that govern the laser abstract from its material mani-
festations to provide a general description that is “common to all, though 
not literally true of any” (1989, p. 211). By contrast, the assumption of 
infi nitesimal size for molecules can be corrected to make the ideal case 
more realistic.

Although I think Cartwright is essentially right in her claim that we can 
never “concretize” abstractions, the question that interests me is why that is 
the case. In her discussion of abstraction Cartwright mentions Duhem, who 
is also concerned with the notion of abstraction in physics. Because physics 
needs to be precise, it can never fully capture the complexity that is char-
acteristic of nature. Hence, the abstract mathematical representations used 
by physics do not describe reality but are better thought of as imaginary 
constructions—neither true nor false. Laws relate these symbols to each 
other and consequently are themselves symbolic. Although these symbolic 
laws will never touch reality, so to speak, they do involve approximations 
that are constantly undergoing modifi cation due to increasing experimen-
tal knowledge (Duhem, 1977, p. 174). In that sense, Duhem’s account of 
abstraction seems also to incorporate elements of what Cartwright would 
call idealization. It also seems clear from his account that the gap between 
symbolic laws and reality is due, essentially, to an epistemic problem that 
besets us in the quest for scientifi c knowledge. Laws are constantly being 
revised and rejected; consequently, we can never claim that they are true or 
false. In addition, because of the precise nature of physics we must repre-
sent reality in a simple and incomplete way in order to facilitate calculation. 
This describes both idealization and abstraction, depending on how one 
chooses to simplify.

What Duhem’s view captures is a philosophical problem that focuses 
on the gap between reality and our representation of it. As we saw earlier, 
the account of abstraction I am concerned with has its basis in this gap as 
well, but is motivated by particular kinds of abstract representations that 
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are required for dealing with certain kinds of systems. Put differently, both 
Duhem’s and Cartwright’s accounts of abstraction describe physics more 
generally and the problems that beset a realist interpretation of theories, 
laws, and models. Although those issues have some bearing on my point, 
my overall concern stems from the way that we are constrained to repre-
sent certain kinds of systems in a mathematically abstract way if we are to 
understand how they behave. Because this goes beyond problems of calcu-
lation to issues about explanation, ‘abstraction as subtraction’ is not a use-
ful category for my purposes. In my account one of the things that makes 
abstraction especially interesting is that it is the mathematical representa-
tion that provides the foundation for understanding causal features of the 
system. The physics and mathematics are inextricably intertwined, making 
our very characterization of these systems mathematical abstractions.

5. BEYOND FICTIONS: THE NECESSITY 
OF ABSTRACTIONS

In the preceding discussion we saw how infi nite populations were an 
important constraint in the operation of the Hardy–Weinberg law. They 
are necessary for eliminating the chance or random infl uences on gene 
frequencies from one generation to the next, something that is common in 
small populations. Deviations from infi nite population size can, of course, 
be handled because the kinds of populations to which one applies these 
models are never infi nite. But in moving to smaller populations one must 
recognize that as population size decreases the effects of drift will become 
more predominant, thereby making it diffi cult to determine whether par-
ticular features of the population are the result of drift or selection. In 
other words, we cannot determine whether the population is undergo-
ing evolutionary change. In that sense infi nite population size (along with 
random mating) is a necessary condition for H-W equilibrium to be main-
tained and for determining how deviations from it (selection, mutation, 
etc.) are to be understood.

Other cases where abstract representations are crucial for understanding 
how the system in question behaves include phase transitions. There are 
a variety of physical systems that fall into this category: superconductiv-
ity, superfl uidity, magnetism, crystallization, and several others. In each 
of these cases there is a spontaneous symmetry breaking associated with 
a phase transition that explains the occurrence of the superconducting or 
magnetic state of matter. Very briefl y, the situation is as follows: In thermo-
dynamics (TD), phase transitions are accounted for in terms of discontinui-
ties in the thermodynamic potentials. However, once we move to statistical 
mechanics (SM) the equations of motion that govern these systems are ana-
lytic and hence do not exhibit singularities. As a result, there is no basis for 
explaining phase transitions in SM. In order to recover the TD explanation 
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we need to introduced singularities into the equations and thus far the only 
way to do this is by assuming the number of particles in the system is infi -
nite. That is, we need to invoke the “thermodynamic limit,” N → ∞, which 
assumes that the system is infi nite in order to understand the behavior of a 
real, fi nite system. Note that the problem here isn’t that the limit provides 
an easier route to the calculational features associated with understand-
ing phase transitions; rather, the assumption that the system is infi nite is 
necessary for the phase transitions to occur. In other words, we have a 
description of a physically unrealizable situation that is required to explain 
a physically realizable one (the occurrence of phase transitions).

Given this situation, how should we understand the relation between the 
abstract description and the concrete phenomena it supposedly explains? 
Although one might want to claim that within the mathematical framework 
of SM we can causally account for (explain) the occurrence of phase transi-
tions by assuming the system is infi nite, it is nevertheless tempting to conclude 
that this explanation does not help us to physically understand how the pro-
cess takes place because the systems that SM deals with are all fi nite. Similar 
doubts have been expressed by Callender (2001) and Earman (2003), who 
argues against taking the thermodynamic limit as a legitimate form of ideal-
ization: “a sound principle of interpretation would seem to be that no effect 
can be counted as a genuine physical effect if it disappears when the idealiza-
tions are removed” (p. 21). Both claim that, we shouldn’t assume phase transi-
tions have been explained (or understood) if their occurrence relies solely on 
the presence of an idealization. Initially this seems an intuitive and plausible 
objection, but if we refl ect for a moment on the way that mathematical abstrac-
tion is employed it becomes clear that this line of reasoning quickly rules out 
explanations of the sort we deem acceptable in other contexts. Here the dis-
tinction I mentioned at the beginning between idealization and abstraction 
becomes especially important. Specifi cally, we need to distinguish between 
the kind of abstraction that is, in some sense, dictated by our models and the 
more straightforward kinds of mathematical idealizations that are used sim-
ply to facilitate calculation. In the former case the abstraction becomes a fun-
damental part of how the system is modeled or represented and consequently 
proves crucial to our understanding of how the system/phenomena behave.

For example, consider the intertheoretical relations that exist in fl uid 
mechanics between Navier–Stokes equations and the Euler equations or 
between theories like wave optics and ray optics, and classical and quan-
tum mechanics. Because of the mathematical nature of physical theories the 
relations between them will typically be expressed in terms of the relations 
between different equations/solutions. In each case we are interested in cer-
tain kinds of limiting behavior expressed by a dimensionless parameter δ. 
In fl uid dynamics δ is equal to 1/Re (Reynolds number), and in quantum 
mechanics it is Planck’s constant divided by a typical classical action (ħ/S). 
But, in fl uid mechanics (as in the other cases listed earlier) the limit δ → 0 
is singular and it is this singularity that is responsible for turbulent fl ows. 
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Similarly, in the ray limit where geometrical optics accurately describes 
the workings of telescopes and cameras the wavelength λ → 0. Because ψ 
is nonanalytic at λ = 0, the wave function oscillates infi nitely rapidly and 
takes all values between +1 and–1 infi nitely often in any fi nite range of 
x or t. A good deal of asymptotic behavior that is crucial for describing 
physical phenomena relies on exactly these kinds of mathematical abstrac-
tions. What we classify as “emergent” phenomena in physics, such as the 
crystalline state, superfl uidity, and ferrogmanetism, to name a few, are the 
results of singularities and their understanding depends on just the kinds of 
mathematical abstractions already described.

How then should we think about these kinds of mathematical abstrac-
tions and their relation to physical phenomena? My point is that the abstract 
(mathematical) representations supplied by our models are what forms our 
understanding of these systems. In the case of phase transitions there are 
formal accounts or defi nitions that appeal to zeros in the partition function, 
changes in symmetry and orderliness, and the existence of fi xed points.19 
In each of these cases a sharp phase transition is possible—the transition 
temperature is well defi ned and the appearance of new orderliness is abrupt. 
Similarly, these formal features function as indicators of the kind of phenom-
ena we identify with phase transitions—a sharp change in specifi c volume or 
density, a change in symmetry or the scaling of properties as measured by 
critical exponents and correlation functions. In other words, the mathematics 
provides not only a representation and precise meaning for phase transitions, 
but it also enables us to associate that representation with dynamical behav-
ior such as symmetry breaking and the appearance of order. The abstract 
model illustrates the essential features of the phenomenon in question. In that 
sense the mathematics and the physics are crucially intertwined.

This also has implications for experimental practice. In cases where N < ∞ 
a phase transition is recognized by a fi nite change in a property like density 
or magnetization for an infi nite change in another property like temperature 
or the magnetic fi eld (as in the case of permanent magnetization). Yet, in a 
theory that has only fi nite volume or fi nite N we can’t be sure that we are 
identifying a phase transition because the formal continuity of the pressure-
volume curve is guaranteed by the analyticity in the activity for fi nite N. In 
these cases any discontinuity or unsmoothness is rounded off or smeared. 
When we do an experiment we are looking for jumps or discontinuities in 
the data that cannot be smoothed over. Although these jumps and curves 
are in the phenomena themselves, it is the job of our models (like the Ising 
model) to tell us the exact form they will take, for example, logarithmic 
singularity.20 This is why the appeal to infi nitely large systems is crucial; 
only there will the appropriate kinks and jumps emerge! Similarly in popu-
lation genetics we need the assumption of infi nite populations to determine 
whether changes in gene frequencies are the result of selection.

If one accepts my characterization of abstraction, then subscribing to 
Callender’s and Earman’s account would be tantamount to ignoring large 
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portions of both the mathematical and physical foundations of our theo-
ries. On their idealization view we need an answer to why cases like the 
thermodynamic limit is considered illegitimate when sending distances 
and time intervals to zero in the use of differential equations is not. Here 
my distinction between idealization and abstraction offers some help. We 
typically think of an idealization as resembling, in certain respects, the 
concrete phenomenon we are trying to understand. We usually know how 
to correct or compensate for what we have left out of, or idealized in, the 
description. That is, we know how to add back things like frictional forces 
that may not have been needed for the problem at hand. Or, we know how 
to change the laws that govern a physical situation when we introduce more 
realistic assumptions, as in the move from the ideal gas law to the van der 
Waals law. These cases are best thought of as idealizations that represent a 
physical situation in a specifi c way for a specifi c purpose.

Constrast this with the kinds of mathematical abstractions described ear-
lier. In the case of the thermodynamic limit, we don’t introduce abstractions 
simply as a way of ignoring what is irrelevant to the problem or as a method 
for calculational expediency. Instead, the mathematical representation func-
tions as a necessary condition for explaining and hence understanding the 
phenomena in question.21 Thinking of abstraction in this way sheds a light 
on the problem Callender and Earman mention because the problem is very 
different from the more straightforward cases of idealization. The impor-
tance of mathematical abstraction in these contexts requires us to think 
differently about what constitutes explanation and understanding, but that 
challenge seems unavoidable. If physical phenomena are and in some cases 
must be described in terms of mathematical abstractions, then it seems rea-
sonable to expect that their explanations be given in similar terms.

We can see how this situation differs signifi cantly from the way fi ctional 
models are used to convey information. Although fi ctional models may con-
strain the physical possibilities once the model structure is in place, there is 
typically a choice about how to construct the model and how to represent 
the system/phenomenon. There is less freedom of movement with idealiza-
tions in that specifi c kinds of approximation techniques inform and deter-
mine the way the system is represented. That said, we often have a choice 
about which parameters we can leave out or idealize, given the problem at 
hand. In cases of mathematical abstraction, however, we are completely 
constrained as to how the system is represented, and the abstraction is a 
necessary feature of our theoretical account.

6. CONCLUSIONS

One of my goals in this chapter was to introduce distinctions among the 
processes involved in constructing a fi ctional model, an idealization, and 
mathematical abstraction. Each of these categories transmits knowledge 
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despite the presence of highly unrealistic assumptions about concrete sys-
tems. Indeed, examples of the sort I want to classify as abstractions require 
these types of assumptions if we are to understand how certain kinds of 
phenomena behave. Although there is a temptation to categorize any type 
of unrealistic representation as a “fi ction,” I have argued that this would 
be a mistake, primarily because this way of categorizing the use of unreal-
istic representations tells us very little about the role those representations 
play in producing knowledge. That said, fi ctional models can function in 
a signifi cant way in various stages of theory development. However, in 
order to uncover the way these models produce information we need to 
pay particular attention to the specifi c structure given by the model itself. 
There is no general method that captures how fi ctional models function 
or transmit knowledge in scientifi c contexts; each will do so in a different 
way, depending on the nature of the problem. By separating these models 
from other cases of abstraction and idealization we can recognize what is 
distinctive about each and in doing so understand how and why unreal-
istic representations can nevertheless provide concrete information about 
the physical world.22

NOTES

 1. For an extended discussion see Morrison (2002).
 2. For more discussion of nuclear models see Morrison (1998) and Portides 

(2000).
 3. In other words, is the presence of idealized assumptions different from assump-

tions that are false in the sense of being deliberately false, like assuming that 
the ether is made up of rotating vortices of fl uid or elastic solid particles? No 
amount of correction changes the form of these latter assumptions.

 4. Although we typically say that models provide us with representations, I 
think we can also extend that idea to laws. By specifying the conditions 
under which the law holds (even if they are just straightforward ceteris pari-
bus conditions) we have specifi ed a scenario or a context that defi nes the 
boundaries for the operation of the law. This specifi cation can be understood 
as a representation of the context under which the law can be assumed to 
hold.

 5. Cartwright (1989), in particular, characterizes abstraction as the “taking 
away” of properties that are part of the system under investigation. For 
example, when modeling a superconductor one abstracts the type of material 
the superconductor is made of.

 6. As we shall see later, it isn’t really the presence of idealizing conditions that is 
responsible for transmitting information; rather, it is the what is presupposed 
in the binomial formula for predicting genotype frequencies.

 7. All references to Maxwell’s papers are contained in the 1965 edition of col-
lected papers.

 8. This is what Seigel (1991) refers to as the “standard account.” He also remarks 
(p. 92) that according to the standard account the motivation for introducing 
the displacement current was to extend Ampere’s law to open circuits in a 
manner consistent with Coulomb’s law and the continuity equation. Although 
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I agree with Seigel that this was certainly not Maxwell’s motivation, I think 
one can incorporate aspects of the standard account into a story that coheres 
with the historical evidence. My intention here is not to weigh in on this 
debate but simply to show how various aspects of the fi eld equations emerged 
from the model.

 9. It is perhaps interesting to note here that in the modern version the electric 
current J appears on the right because it is regarded as the “source” of the 
magnetic fi eld H. This is because charges and currents are typically seen as 
the sources or causes of fi elds. This, however, was introduced by Lorentz, 
who combined the Maxwellian fi eld theory approach with the continental 
charge-interaction tradition, resulting in a kind of dualistic theory where 
charges and currents as well as electric and magnetic fi elds are all fundamen-
tal, with the former being the source of the latter.

 10. See Seigel (1991, pp. 130–135).
 11. In addition to the agreement between the velocity of propagation of electo-

magnetic waves and light there were also two other connections between 
electromagnetic and optical phenomena that emerged from the model; one 
was the Faraday effect and the other involved refractive indices of dielectric 
media.

 12. In the end, however, there was no real explanation of the way that elastic 
forces produced electric lines of force. Instead, he was able to calculate the 
resultant electrical force without any precise specifi cation of how it arose 
(i.e., there was no calculation of a stress tensor of the medium, as in the mag-
netic case, from which he could then derive the forces).

 13. For an extended discussion of the differences in the two accounts of displace-
ment see pages 146–147 and 150–151 in Seigel (1991).

 14. See Morrison (2000) for a detailed account of the development of the electro-
magnetic theory and the unifi cation of electromagnetism and optics.

 15. Why this is an instance of both abstraction and idealization will be discussed 
later.

 16. The law of segregation refers to the fact that the characters that differenti-
ate hybrid forms can be analysed in terms of independent pairs; that is, each 
analagen acts separately—they do not fuse. We can also understand this as 
stating that any hybrid for a given character produces an offspring distrib-
uted according to defi nite proportions. If the pure parental forms are A and 
a and the hybrid Aa, then the offspring of the hybrid will be distributed 
according to the ration 1A:2Aa:1a. Pearson (1904) was probably the fi rst to 
show the relation between the law of segregation and the stability of a popu-
lation in the absence of selection.

 17. The notion of presupposed that I have in mind here is the same as the one 
connected to the ideal gas law—in order for the law to hold one must presup-
pose that the molecules of the gas are infi nitesimal in size and have no forces 
acting between them.

 18. In addition to the presence of unrealistic assumptions about the kinds of 
populations in which the law holds, the stability embedded in the structural 
form of the law is also crucial in explaining how/why it works. The variation 
preserving feature associated with the stability requires that the gene have a 
discrete, atomistic character. The importance of the “unrealistic” constraints 
is to highlight the impact of different factors and the degree to which they 
affect the evolutionary processs. Because the law represents a stable station-
ary state for a sexually reproducing population, it enables us to judge the 
effects of selection, preferential mating, etc. on the homogeneous fi eld of 
allele and genotype frequencies. The fundamental assumption required for 
this picture to work is that of a structure that preserves modifi cations.
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 19. The most important information in the renormalization group fl ow is given 
by its fi xed points, which give the possible macroscopic states of the system 
at a large scale.

 20. Similarly, the uniformity of convergence defi nes what we mean phenomeno-
logically by a phase of matter.

 21. For an excellent discussion of issues surrounding the notion of reduction and 
the thermodynamic limit see Batterman (2005).

 22. Support of research by the Social Sciences and Humanities Research Council 
of Canada is gratefully acknowledged.


