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INTRODUCTION 

What Is This Book About? 

This book explores the intersection between statistics and philosophy, with the 
aim of introducing philosophy to data scientists and data science to philosophers. By 
“data science” I am not referring to specifc disciplines such as statistics or 
machine learning research; rather, I am using the term to encompass all scientifc 
as well as practical activities that rely on quantitative data to make inferences 
and judgments. But why would such a practical science have anything to do 
with philosophy, often caricatured as empty armchair speculation? Statistics is 
usually regarded as a rigid system of inferences based on rigorous mathematics, 
with no room for vague and imprecise philosophical ideologies. A philosophi-
cally minded person, on the other hand, might dismiss statistics as merely a 
practical tool that is utterly useless in tackling deep and inefable philosophical 
mysteries. 

The primary aim of this book is to dispel these kinds of misconceptions. 
Statistics today enjoys a privileged role as the method of deriving scientifc 
conclusions from observed data. For better or worse, in most popular and sci-
entifc articles, “scientifcally proven” is taken to be synonymous with “approved 
by a proper statistical procedure.” But on what theoretical ground is statistics 
able to play, or at least expected to play, such a privileged role? The justifcation 
of course draws its force from sophisticated mathematical machinery, but how 
is such a mathematical framework able to justify scientifc—that is, empirical— 
knowledge in the frst place? This is a philosophical question par excellence, and 
various statistical methods, implicitly or explicitly, have some philosophical 
intuitions at their root. These philosophical intuitions are seldom featured in 
common statistics textbooks, partly because they do not provide any extra tools 
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2 Introduction 

that readers could use to analyze data they collect for their theses or research 
projects. However, understanding the philosophical intuitions that lie behind 
the various statistical methods, such as Bayesian statistics and hypothesis testing, 
will help one get a grip on their inferential characteristics and make sense of 
the conclusions obtained from these methods, and thereby become more con-
scious and responsible about what one is really doing with statistics. Moreover, 
statistics is by no means a monolith: it comprises a variety of methods and 
theories, from classical frequentist and Bayesian statistics to the rapidly develop-
ing felds of machine learning research, information theory, and causal inference. 
It goes without saying that the proper application of these techniques demands 
a frm grasp of their mathematical foundations. At the same time, however, they 
also involve philosophical intuitions that cannot be reduced to mathematical 
proofs. These intuitions prescribe, often implicitly, how the world under inves-
tigation is structured and how one can make inferences about this world. Or, 
to use the language of the present book, each statistical method embodies a 
distinct approach to inductive inference, based on its own characteristic ontology 
and epistemology. Understanding these ideological backgrounds proves essential 
in the choice of an appropriate method vis-à-vis a given problem and for the 
correct interpretation of its results, i.e., in making sound inferences rather than 
falling back on the routine application of ready-made statistical packages. This 
is why I believe philosophical thinking, despite its apparent irrelevance, can be 
useful for data analysis. 

But, then, what is the point for a philosopher to learn statistics? The standard 
philosophy curriculum in Japanese and American universities is mostly 
logic-oriented and does not include much training in statistics, with the 
possible exception of some basic probability calculus under the name of 
“inductive logic.” Partly because of this, statistics is not in most philosophers’ 
basic toolbox. I fnd this very unfortunate, because statistics is like an ore 
vein that is rich in fascinating conceptual problems of all kinds. One of the 
central problems of philosophy from the era of Socrates is: how can we 
acquire episteme, or true knowledge? This question has shaped the long 
tradition of epistemology that runs through the modern philosophers Descartes, 
Hume, and Kant, leading up to today’s analytic philosophy. In the course of 
its history, this question has become entwined with various ontological and/ 
or metaphysical issues such as the assumption of the uniformity of nature, 
the problem of causality, natural kinds, and possible worlds, to name just a 
few. As the present book aims to show, statistics is the modern scientifc 
variant of philosophical epistemology that comprises all these themes. That 
is, statistics is a scientifc epistemology that rests upon certain ontological 
assumptions. Therefore, no one working on epistemological problems today 
can aford to ignore the impressive development and success of statistics in 
the past century. Indeed, as we will see, statistics and contemporary 
epistemology share not only common objectives and interests; there is also 



 

 
 

Introduction 3 

a remarkable parallelism in their methodologies. Attending to this parallelism 
will provide a fruitful perspective for tackling various issues in epistemology 
and philosophy of science. 

Given what has been said thus far, a reader might expect that this book is 
intended as an introduction to the philosophy of statistics in general. It is not, 
for two reasons. First, this book does not pretend to introduce the reader to 
the feld of the philosophy of statistics, a well-established branch of contemporary 
philosophy with a wealth of discussions concerning the theoretical ground of 
inductive inference, interpretations of probability, the everlasting battle between 
Bayesian and frequentist statistics, and so forth (Bandyopadhyay and Forster 
2010). While these are all important and interesting topics, going through them 
would make a huge volume, and in any case far exceeds the author’s capability. 
Moreover, as these discussions often tend to be highly technical and assume 
familiarity with both philosophy and statistics, non-specialists may fnd it difcult 
to follow or keep motivated. Some of these topics are of course covered in this 
book, and in the case of others I will point to the relevant literature. But instead 
of trying to cover all these traditional topics, this book cuts into philosophical 
issues in statistics with my own approach, which I will explain in a moment. 
Thus readers should keep in mind that this book is not intended as a textbook-
style exposition of the standard views in the philosophy of statistics. 

The second reason why this book is not entitled An Introduction to the Phi-
losophy of Statistics is that it does not aim to be an “introduction” in the usual 
sense of the term. The Japanese word for introduction literally means “to enter 
the gate,” with the implication that a reader visits a particular topic and stays 
there as a guest for a while (imagine visiting a temple) in order to appreciate, 
experience, and learn its internal atmosphere and architectural art. This book, 
however, is not a well-mannered tour guide who quietly stays at one topic, 
either statistics or philosophy. It is indeed a restless traveler, entering the gate 
of statistics, quickly leaving and entering philosophy from a diferent gate, only 
to be found in the living room of statistics at the next moment. At any rate, 
the goal of this book is not to make the reader profcient in particular statistical 
tools or philosophical ideas. This does not mean that it presupposes prior famil-
iarity with statistics or philosophy: on the contrary, this book is designed to be 
as self-contained as possible, providing plain explanations for every statistical 
technique and philosophical concept at their frst appearance (so experts may 
well want to skip these introductory parts). The aim of these explanations, 
however, is not to make the reader a master of the techniques and ideas them-
selves; rather, they are meant to elucidate the conceptual relationships among 
these techniques and ideas. Throughout this book we will ask questions like: 
how is a particular statistical issue discussed in the context of philosophy? How 
does a particular philosophical concept contribute to our understanding of 
statistical thinking? Through such questions, this book aims to bridge statistics 
and philosophy and reveal the conceptual parallelism between them. Because 



 

 
 

 
 
 
 
 

 
 
 
 

 

 

4 Introduction 

of this interdisciplinary character, this book is not entitled “Introduction” and 
is not intended to be read as such. That is, this book does not pretend to train 
the reader to become a data scientist or philosopher. Rather, this is a book for 
border-crossers: it tempts the data analyst to become a little bit of a philosopher, 
and the philosophy lover to become a little bit of a data scientist. 

The Structure of the Book 

What kind of topics, then, are covered in this book? This book may be likened 
to a fabric, woven with philosophy as its warp and statistics as its weft. The 
philosophy warp consists of three threads: ontology, semantics, and epistemology. 
Ontology is the branch of philosophy that studies the real nature of things exist-
ing in the world. Notable historical examples include the Aristotelian theory 
of the four elements, according to which all subcelestial substances are composed 
from the basic elements of fre, air, water, and earth; and the mechanical phi-
losophy of the 17th century, which aimed to reduce all physical matter to 
microscopic particles. But ontology is not monopolized by philosophers. Indeed, 
every scientifc theory makes its own ontological assumptions as to what kinds 
of things constitute the world that it aims to investigate. The world of classical 
mechanics, for example, is populated by massive bodies, while a chemist or 
biologist would claim that atoms and molecules, or genes and cells, also exist 
according to their worldview. We will not be concerned here with issues such 
as the adequacy of these ontological claims, or which entities are more “fun-
damental” and which are “derivative.” What I am pointing out is simply the 
truism that every scientifc investigation, insofar as it is an empirical undertaking, 
must make clear what the study is about. 

Unlike physics or biology, which have a concrete domain of study, statistics 
per se is not an empirical science and thus may not seem to rely on any explicit 
assumption about what exists in the world. Nevertheless, it still makes ontologi-
cal assumptions about the structure of the world in a more abstract way. What 
are the entities posited by statistics? The frst and foremost thing that must exist 
in statistics is obvious: data. But this is not enough—the true value of statistics, 
especially its primary component known as inferential statistics, lies in its art 
of inferring the unobserved from the observed. Such an inference that goes 
beyond the data at hand is called induction. As the 18th-century Scottish phi-
losopher David Hume pointed out, inductive inference relies on what he called 
the uniformity of nature behind the data. Inferential statistics performs predictions 
and inferences by mathematically modeling this latent uniformity behind the 
data (Chapter 1). These mathematical models come in various forms, with 
difering shades of ontological assumptions. Some models assume more “exis-
tence” in the world than others, in order to make broader kinds of inferences 
possible. Although such philosophical assumptions often go unnoticed in sta-
tistical practice, they also sometimes rear their head. For instance, questions 



 

 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Introduction 5 

such as “In what sense are models selected by AIC considered good?” or “Why 
do we need to think about ‘possible outcomes’ in causal inference?” are onto-
logical questions par excellence. In each section of this book, we will try to reveal 
the ontological assumptions that underpin a given statistical method, and consider 
the implications that the method has on our ontological perspective of the 
world. 

Statistics thus mathematically models the world’s structure and expresses it 
in probabilistic statements. But mathematics and the world are two diferent 
things. In order to take such mathematical models as models of empirical phe-
nomena, we must interpret these probabilistic statements in a concrete way. For 
example, what does it mean to say that the probability of a coin’s landing heads 
is 0.5? How should we interpret the notorious p-value? And what kind of state 
of afair is represented by the statement that a variable X causes another variable 
Y? Semantics, which is the second warp thread of this book, elucidates the 
meaning of statements and conceptions that we encounter in statistics. 

Statistics is distinguished from pure mathematics in that its primary goal is 
not the investigation of mathematical structure per se, but rather the application 
of its conclusions to the actual world and concrete problems. For this purpose, 
it is essential to have a frm grasp of what statistical concepts and conclusions 
stand for, i.e., their semantics. However, just as statistics itself is not a monolith, 
so the meaning and interpretation of its concepts are not determined uniquely 
either. In this book we will see the ways various statistical concepts are under-
stood in diferent schools of statistics, along with the implications that these 
various interpretations have for actual inferential practices and applications. 

The third and last warp thread of this book is epistemology, which concerns 
the art of correctly inferring the entities that are presupposed and interpreted 
from actual data. As we noted earlier, statistics is regarded as the primary 
method by which an empirical claim is given scientifc approval in today’s 
society. There is a tacit social understanding that what is “proven” statistically 
is likely true and can be accepted as a piece of scientifc knowledge. What 
underlies this understanding is our idea that the conclusion of an appropriate 
statistical method is not a lucky guess or wishful thinking; it is justifed in a 
certain way. But what does it mean for a conclusion to be justifed? There 
has been a long debate over the concept of justifcation in philosophical epis-
temology. Similarly, in statistics, justifcation is understood in diferent ways 
depending on the context—what is to be regarded as “(statistically) certain” 
or counts as statistically confrmed “knowledge” is not the same among, say, 
Bayesian statistics, classical statistics, and the machine learning literature, and 
the criteria are not always explicit even within each tradition. This discrepancy 
stems from their respective philosophical attitudes as to how and why a priori 
mathematical proofs and calculations are able to help us in solving empirical 
problems like prediction and estimation. This philosophical discordance has 
led to longstanding conficts among statistical paradigms, as exemplifed by the 



 

 
 
 
 
 
 
 
 

 

 

 

 
 
 

 

 
 
 

6 Introduction 

notorious battle between Bayesians and frequentists in the 20th century. It is 
not my intention to fuel this smoldering debate in this book; rather, what I 
want to emphasize is that this kind of discrepancy between paradigms is rooted 
in the diferent ways that they understand the concept of justifcation. Keeping 
this in mind is important, not in order to decide on a winner, but in order 
to fully appreciate their respective frameworks and to refect on why we are 
able to acquire empirical knowledge through statistical reasoning in the frst 
place. As will be argued in this book, the underlying epistemology of Bayesian 
statistics and that of classical testing theory are akin to internalism and exter-
nalism in contemporary epistemology, respectively. This parallelism, if it holds, 
is quite intriguing, given the historical circumstance that statistics and philo-
sophical epistemology developed independently without much interaction, 
despite having similar aims. 

With ontology, semantics, and epistemology as our philosophical warp threads, 
each chapter of this book will focus on a specifc statistical method and analyze 
its philosophical implications; this will constitute the weft of this book. 

Chapter 1 is a preliminary introduction to statistics without tears for those 
who have no background knowledge of the subject. It reviews the basic distinc-
tion between descriptive and inferential statistics and explains the minimal math-
ematical framework necessary for understanding the remaining chapters, including 
the notions of sample statistics, probability models, and families of distributions. 
Furthermore, the chapter introduces the central philosophical ideas that run 
through this book, namely that this mathematical framework represents an ontol-
ogy for inductive reasoning, and that each of the major statistical methods provides 
an epistemological apparatus for inferring the entities thus postulated. 

With this basic framework in place, Chapter 2 takes up Bayesian statistics. 
After a brief review of the standard semantics of Bayesian statistics, namely the 
subjective interpretation of probability, the chapter introduces Bayes’ theorem 
and some examples of inductive inference based on it. The received view takes 
Bayesian inference as a process of updating—through probabilistic calculations 
and in accordance with evidence—an epistemic agent’s degree of belief in 
hypotheses. This idea accords well with internalist epistemology, according to 
which one’s beliefs are to be justifed by and only by other beliefs, via appro-
priate inferential procedures. Based on this observation, it will be pointed out 
that well-known issues of Bayesian statistics, like the justifcation of prior prob-
abilities and likelihood, have exact analogues in foundationalist epistemology, 
and that if such problems are to be avoided, inductive inference cannot be 
confned to internal calculations of posterior probabilities but must be opened 
up to holistic, extra-model considerations, through model-checking and the 
evaluation of predictions. 

Chapter 3 turns to so-called classical statistics, and in particular the theory of 
statistical hypothesis testing. We briefy review the frequentist interpretation of 
probability, which is the standard semantics of classical statistics, and then we 



 

 
 
 
 
 
 
 

 

 
 
 
 

 
 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

Introduction 7 

introduce the basics of testing theory, including its key concepts like signifcance 
levels and p-values, using a simple example. Statistical tests tell us whether or not 
we should reject a given hypothesis, together with a certain error probability. 
Contrary to a common misconception, however, they by no means tell us about 
the truth value or even probability of a hypothesis. How, then, can such test results 
justify scientifc hypotheses? We will seek a clue in externalist epistemology: by 
appealing to a view known as reliabilism and Nozick’s tracking theory, I argue that 
good tests are reliable epistemic processes, and their conclusions are therefore justi-
fed in the externalist sense. The point of this analogy is not simply to draw a 
connection between statistics and philosophy, but rather to shed light on the well-
known issues of testing theory. In particular, through this lens we will see that the 
misuse of p-values and the replication crisis, which have been a topic of contention 
in recent years, can be understood as a problem concerning the reliability of the 
testing process, and that the related criticism of classical statistics in general stems 
from a suspicion about its externalist epistemological character. 

While the aforementioned chapters deal with classical themes in statistics, 
the fourth and ffth chapters will focus on more recent topics. The main theme 
of Chapter 4 is prediction, with an emphasis on the recently developed tech-
niques of model selection and deep learning. Model selection theory provides 
criteria for choosing the best among multiple models for the purpose of pre-
diction. One of its representative criteria, the Akaike Information Criterion 
(AIC), shows us that a model that is too complex, even if it allows for a more 
detailed and accurate description of the world, may fare worse in terms of its 
predictive ability than a simpler or more coarse-grained model. This result 
prompts us to reconsider the role of models in scientifc inferences, suggesting 
the pragmatist idea that modeling practices should refect and depend on the 
modeler’s practical purposes (such as the desired accuracy of predictions) as 
well as limitations (the size of available data). On the other hand, deep learning 
techniques allow us to build highly complex models, which are able to solve 
predictive tasks with big data and massive computational power. The astonish-
ing success of this approach in the past decade has revolutionized scientifc 
practice and our everyday life in many aspects. Despite its success, however, 
deep learning models difer from traditional statistical models in that much of 
their theoretical foundations and limitations remain unknown—in this respect 
they are more like accumulations of engineering recipes developed through 
trial and error. But in the absence of theoretical proofs, how can we trust the 
outcomes or justify the conclusions of deep learning models? We will seek a 
clue to this question in virtue epistemology, and argue that the reliability of a 
deep learning model can be evaluated in terms of its model-specifc epistemo-
logical capability, or epistemic virtue. This perspective opens up the possibility 
of employing philosophical discussions about understanding the epistemic abili-
ties of other people and species for thinking about what “understanding a deep 
learning model” amounts to. 



 

 

 

 

8 Introduction 

Chapter 5 changes gears and deals with causal inference. Every student of 
statistics knows that causality is not probability—but how are they diferent? In 
the language of the present book, they correspond to distinct kinds of entities; 
in other words, probabilistic inference and causal inference are rooted in difer-
ent ontologies. While predictions are inferences about this actual world, causal 
inferences are inferences about possible worlds that would or could have been. 
With this contrast in mind, the chapter introduces two approaches to causal 
inference: counterfactual models and structural causal models. The former 
encodes situations in possible worlds using special variables called potential 
outcomes, and estimates a causal efect as the diference between the actual and 
possible worlds. The latter represents a causal relationship as a directed graph 
over variables and studies how the topological relationships among the graph’s 
nodes determine probability distributions and vice versa. Crucial in both 
approaches is some assumption or other concerning the relationship between, 
on the one hand, the data observed in the actual world and, on the other, the 
possible worlds or causal structures which, by their very nature, can never be 
observed. The well-known “strongly ignorable treatment assignment” assumption 
and the “causal Markov condition” are examples of bridges between these distinct 
ontological levels, without which causal relationships cannot be identifed from 
data. In causal inference, therefore, it is essential to keep in mind the ontological 
level to which the estimand (the quantity to be estimated) belongs, and what 
assumptions are at work in the estimation process. 

On the basis of these considerations, the sixth and fnal chapter takes stock 
of the ontological, semantic, and epistemological aspects of statistics, with a 
view toward the fruitful and mutually inspiring relationship between statistics 
and philosophy. 

Figure 0.1 depicts the logical dependencies among the chapters. Since philo-
sophical issues tend to relate to one another, the parts of this book are written 
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FIGURE 0.1 Flowchart of the book 
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in such a way that they refect as many of these organic connections as possible. 
Readers who are interested in only certain portions of the book will fnd the 
diagram useful for identifying relevant contexts and subsequent material. At the 
end of each chapter I have included a short book guide for the interested reader. 
I stress, however, that the selection is by no means exhaustive or even standard: 
rather, it is a biased sample taken from a severely limited pool. There are many 
good textbooks on both statistics and philosophy, so the reader is encouraged 
to consult works that suit their own needs and tastes. 



 

 

1 
THE PARADIGM OF MODERN 
STATISTICS 

OK, so let’s get down to business. Statistics is, very roughly speaking, the art 
of summarizing data and using this information to make inferences. This chapter 
briefy reviews the ABCs of the mathematical framework that underpins these 
activities. Modern statistics is divided into two parts, descriptive statistics and 
inferential statistics, which we will review in turn, laying out their respective 
philosophical backgrounds. Although the mathematics is kept to the bare mini-
mum, this chapter contains the highest dose of mathematical symbols in the 
entire book. But there’s no need to be afraid: they’re not that complicated at 
all, and understanding the mathematical details, though useful, is not an absolute 
requisite for following the subsequent philosophical discussions. The most 
important thing for our purpose is to grasp the ideas behind the mathematical 
apparatus, so an impatient reader may just skim or skip the formulae on their 
frst reading and return to the details later if necessary. 

1.1 Descriptive Statistics 

As its name suggests, the historical origin of statistics is closely related to the 
formation of modern states. The development of modern centralized nations in 
western Europe during the 18th and 19th centuries was accompanied by an 
“avalanche of printed numbers” (Hacking 1990). In the name of taxation, mili-
tary service, city planning, and welfare programs, information of all kinds from 
all over a country was collected by the rapidly emerging bureaucratic system 
and reported to the central government in the form of printed fgures. The 
food of numbers confronted policymakers with an urgent need to summarize 
and extract necessary information from “big data” for decision making. It is still 
a common practice today to summarize observed data in terms of its mean or 
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The Paradigm of Modern Statistics 11 

variance, or to visualize the data using a plot or histogram. The whole set of 
such techniques we use to summarize data and make them intelligible is called 
descriptive statistics. The various indices used to summarize data are called sample 
statistics or simply statistics, representative examples of which include sample 
means, sample variances, and standard deviations. 

1.1.1 Sample Statistics 

Univariate statistics 

Imagine there are n students in a classroom, and we represent their height with 
a variable X. Specifc values obtained by measuring students’ height are denoted 
by x , x , . . ., x , where x  is the height of the ith student, so that x  = 155 if

1 2 n i i 

she is 155 cm tall. If, on the other hand, we use another variable Y to denote 
the age, y

i
 = 23, say, means that the ith student is 23 years old. In general, 

variables (denoted by capital letters) represent characteristics to be observed, 
while their values (small letters) represent the results of the observation. A set 
of observed data is called a sample. 

The sample mean of variable X is the total sum of the observed values of X 
divided by the sample size n: 

˛ 
n x1 ° x °  ° x 12 nX ˜ ˜ xi . n n 
i 

The sample mean summarizes data by giving their “center of mass.” Another 
representative index is the sample variance, defned as follows.1 

n 
2

var(X ) ˜ 1 ˙˛xi ° X ̋  . 
n 

i 

In order to calculate the sample variance, we subtract the mean from each data 
point, square the result, and then take their mean (we take the square so that 
we count positive and negative deviations from the mean equally). Each sum-
mand measures the distance of the corresponding data point from the mean; 
hence, their sum is small if the data are concentrated around the mean, and 
large if they are scattered widely. The sample variance thus represents the extent 
of the overall dispersion of the data. 

The sample variance in a sense “exaggerates” the deviations because they get 
squared in the calculation. If one wants to know the dispersion in the original 
units, one can take the square root of the variance to get the standard 
deviation: 

n 
2

sd( )X ˜ var X ˜ ˛x ˝( )  1 ˙ ° X .i n 
i 
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12 The Paradigm of Modern Statistics 

Multivariate Statistics 

The sample statistics mentioned in the previous subsection focus on just one 
aspect or variable of the data. When there is more than one variable, we are 
sometimes interested in the relationship between them. We may be interested, 
for example, in whether students’ height and age covary, so that older students 
tend to be taller. The degree to which one variable X varies along with another 
Y is measured by their sample covariance: 

n 

cov(X Y, )  ˜ 1 ˙˛x ° X ˝˛y ° Y ˝.i i n 
i 

The idea is similar to variance, but instead of squaring the deviations of X from 
its mean, for each data point we multiply the deviation of X with that of Y 
and then take their mean. Since each summand in this case is a product of 
deviations, one in X and the other in Y, it becomes positive when the variables 
deviate in the same direction—so that x and y are both above or below their 
means—and negative when the deviations are in the opposite direction—i.e., 
when one is above while the other is below their corresponding means. Sum-
ming these up, the sample covariance becomes positive if X and Y tend to 
covary, and negative if they tend to vary in opposite ways. 

The covariance divided by the standard deviation of each variable is called 
the correlation coefcient: 

cov(X Y, )
corr( ,  ) = .X Y  

sd X sd( )( )  Y 

The correlation coefcient is always within the range −1 ≤ corr(X,Y) ≤ 1 and 
is therefore useful when we want to compare the relative strength of the rela-
tionship between a pair of variables with that of another pair. When the cor-
relation coefcient of two variables is larger (or smaller) than zero, they are said 
to be positively (or negatively) correlated. 

Covariance and correlation are symmetric measures of the association between 
two variables. But sometimes our interest is directional, and in that case it would 
be useful to relate one variable to another along this direction. We may be 
interested, for example, in how students’ height changes on average when they 
become a year older. This is given by 

cov(X Y, )
bx y, = 

( )
, 

var Y 

which is called the regression coefcient of X on Y and represents the change in 
X per unit change in Y. The answer to the aforementioned question therefore 
becomes: according to the data, the height X increases on average by b

x,y
 for 
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The Paradigm of Modern Statistics 13 

every increase in age Y by a year. The regression coefcient gives the slope of 
the regression line. That is, it is the slope of the line that best fts the data, or, 
more precisely, the line that minimizes the sum of the squared deviations from 
each data point. 

Discrete Variables 

The features we observe need not be expressed in terms of continuous variables, 
as in the case of height. We may, for example, represent the outcome of a coin 
fip with the variable X, and let 1 denote heads and 0 tails. Variables like these 
that do not take continuous values are called discrete variables. In this example, 
the outcome of n coin fips can be represented as a sequence (x

1
, x

2
, .  .  ., x

n
), 

where each x
i
 is either 0 or 1. The mean X  is the proportion of heads among 

the n trials. The sample variance can be calculated in the same way, and it is 
greatest when one gets an equal number of heads and tails, and zero if only 
one side of the coin comes up. Thus, the sample variance measures the disper-
sion of an outcome, just as in the case of continuous variables. 

1.1.2 Descriptive Statistics as “Economy of Thought” 

Let us pause here and think about what all the statistical quantities we have just 
defned tell us. As noted at the outset, the primary role of sample statistics is 
to present large data in an easy-to-understand way, and thereby to uncover 
structures or relationships that are often invisible when the data are presented 
as a mere sequence of numbers. This is illustrated by Figure 1.1, the frst regres-
sion plot made by Francis Galton, the progenitor of regression analysis, in order 
to study the relationship between the mean parental height (the average of the 
mother’s and father’s heights) and the average height of their children among 
205 families in 19th-century England. The positive slope of the regression line 
tells us that the children of taller-than-average parents tend to be tall on average. 
At the same time, the fact that the slope is less than one indicates that parental 
height is not perfectly inherited to ofspring; in other words the children’s height 
is on average not as “extreme” as their parents’ height. Galton named this phe-
nomenon regression toward the mean and worried that, just like height, extraor-
dinary talents and qualities of humankind may sink into mediocrity if left to 
the course of nature. Setting aside the question of whether his worry is justifed, 
Galton’s regression analysis vividly illustrates the relationship between parents’ 
and children’s heights, or to put it a bit dramatically, it succeeds in uncovering 
a hidden regularity or law buried in the raw data. 

Galton’s work well-embodies one of the Zeitgeister of his day, namely, the 
positivist vision of science according to which the objective of scientifc inves-
tigation is nothing but to summarize and organize the observed data into a 
coherent order. The core thesis of positivism is that scientifc discourse must 
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14 The Paradigm of Modern Statistics 

FIGURE 1.1 Galton’s (1886) regression analysis. The vertical axis is the mean parental 
height and the horizontal axis is the mean children’s height, both in 
inches, while the numbers in the fgure represent the counts of the 
corresponding families. The regression lines are those that are labeled 
“Locus of vertical/horizontal points.” 

be based on actual experience and observation. This slogan may sound quite 
reasonable, or even a truism: surely, we expect the sciences be based on facts 
alone and refrain from employing concepts of unobservable, supernatural 
entities such as “God” or “souls”? The primary concern of positivism, how-
ever, was rather those concepts within science that appear “scientifc” at frst 
sight but are nevertheless unobservable. A notable example is the concept of 
the atom, which was incorporated by Boltzmann in his theory of statistical 
mechanics in order to explain properties of gases such as temperature and 
pressure in terms of the motion of microscopic particles and their interac-
tions. Ernst Mach, a physicist and the fery leader of the positivist movement, 
attacked Boltzmann’s atomism, claiming that such concepts as “atoms” or 
“forces” are no better than “God” or “souls,” in that they are utterly impos-
sible to confrm observationally, at least according to the technological stan-
dards of the time. Alleged “explanations” that invoke such unobservable 
postulates do not contribute to our attaining a solid understanding of nature, 
and thus should be rejected. Instead of fancying unobservable entities, genuine 
scientists should devote their eforts to observing data and organizing 



 

 
 

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

The Paradigm of Modern Statistics 15 

them into a small number of neat and concise laws so that we can attain a 
clear grasp of the phenomena—Mach promoted such an “economy of thought” 
as the sole objective of science. 

Mach’s vision was taken over by Galton’s successor, Karl Pearson, who laid 
down the mathematical foundation of descriptive statistics. Pearson redirected 
Mach’s positivist attack on unobservables to the concept of causality. Although 
the idea of a causal relationship, where one event A brings about another event 
B, is ubiquitous in our everyday conversations as well as scientifc discourse, a 
closer inspection reveals that its empirical purport is hardly obvious. Imagine 
that a moving billiard ball hits another one at rest, making the latter move. All 
that one observes here, however, is just the movement of the frst ball and a 
collision, followed by the movement of the second ball. When one says upon 
making this observation that “the former brings about the latter,” one doesn’t 
actually witness the very phenomenon of “bringing about.” As Hume had 
already pointed out in the 18th century, all we observe in what we call a causal 
relationship is just a constant conjunction in which the supposed cause is followed 
by the supposed efect; we do not observe any “force” or the like between the 
two. Nor do we fnd anything like this in numerical data: all that descriptive 
statistics tells is that one variable X is correlated with another Y, or that the 
slope of the regression line between them is steep; we never observe in the 
data the very causal relationship where the former brings about the latter. All 
this suggests, Pearson argues, that the concept of causality, along with “God” 
and “atoms,” is unobservable and has no place in positivist science, where only 
those concepts that have a solid empirical basis are allowed. Note that this 
claim difers from the oft-made remark that causation cannot be known or 
inferred from correlation. Pearson’s criticism is much stronger, in that he claims 
we should not worry about causality to begin with because science has no 
business with it. What we used to call “causality” should be replaced by con-
stant conjunction and redefned in terms of the more sophisticated concept of 
the correlation coefcient, which can be calculated from data in an objective 
and precise manner. In Pearson’s eyes, descriptive statistics provides just enough 
means to achieve the positivist end of economy of thought, and the concept 
of causality, being a relic of obsolete metaphysics, must be expelled from this 
rigid framework. 

Ontologically speaking, positivism is an extreme data monism: it claims that 
the only things that genuinely “exist” in science are data that are measured in 
an objective manner and concepts defned in terms of these data, while every-
thing else is mere human artifact. Any concept, to be admissible in science, 
must be reducible to data in an explicit fashion or else banned from scientifc 
contexts, however well it may appear to serve in an explanation. This itself is 
an old idea that can be traced back to 17th- and 18th-century British empiri-
cism, which limited the source of secure knowledge to perceptual experience 
alone. But erecting a scientifc methodology upon this metaphysical thesis calls 
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16 The Paradigm of Modern Statistics 

for a more rigorous and objective reformulation of its ontological framework. 
Suppose, for instance, that a follower of Hume claimed that all that exist are 
constant conjunctions among events, where “constant conjunction” means that 
those events tend to co-occur. This, however, is at best ambiguous and does 
not tell us what it means exactly for two events to co-occur, nor does it give 
us any clue as to how many co-occurrences are sufcient for us to conclude 
that there is a constant conjunction. Correlation coefcients answer these ques-
tions by providing an objective criterion: two variables are related or constantly 
conjunct when their correlation coefcient is close to one. Of course, there is 
still some ambiguity as to how close to one it must be, but at least it ofers a 
fner-grained expression that enables one to, say, compare the strength of several 
conjunctive relationships by looking at their respective correlation coefcients. 
Descriptive statistics thus furnishes the positivist agenda with a substantive 
methodology for representing, organizing, and exploring observed raw data, 
allowing us to extract meaningful relationships and laws. Pearson published his 
scientifc methodology in The Grammar of Science (Pearson 1892), a title that 
boldly declares his manifesto that descriptive statistics, which articulates Mach’s 
data-monistic ontology in a precise language, is the canonical approach to posi-
tivist science. 

1.1.3 Empiricism, Positivism, and the Problem of Induction 

So far we have briefy reviewed the basics of descriptive statistics and its meth-
odological implications for the positivist vision of science as a pursuit of economy 
of thought. One may ask, however, whether this positivist vision accurately 
represents actual scientifc practice and its goals. Driven by the epistemic tenet 
that knowledge must be built on a secure ground, the positivist philosophy 
trims down the foundation of science to just those phenomena that are observ-
able and measurable, rejecting all other concepts that are irreducible to experi-
ence as metaphysical nonsense. The certainty we derive from this ascetic attitude, 
however, comes with a high price. The highest is the impossibility of inductive 
reasoning, already pointed out by Hume. Induction is a type of reasoning that 
infers an unobserved or unknown state of afairs from given experience, obser-
vation, or data. Characterized as such, it encompasses the majority of our 
inferential practices, from the mundane guesswork about whether one can fnd 
an open table in the lunchtime cafeteria to the scientifc assessment of the 
efcacy of a new drug based on clinical trials. In carrying out these inferences, 
we implicitly assume that the unobserved phenomena to be inferred should be 
similar to the observed ones that serve as the premise of our inference. Hume 
called this assumption—that nature operates in the same way across past and 
future—the uniformity of nature. It should be noted that this assumption of uni-
formity can never be justifed by past experiences, because our experiences are 
just a historical record and by themselves contain no information about the 



 

 

 
 

 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
  

The Paradigm of Modern Statistics 17 

yet-to-be-experienced future. This means that inductive inferences inevitably 
involve an assumption that cannot be observed within or confrmed by our 
experience. Hence, if we were to strictly follow the positivist standard and kick 
out from scientifc investigation all such postulates that lack an empirical justi-
fcation, we at the same time lose all grounds for inductive reasoning. 

The same limitation applies to descriptive statistics. In fact, the whole frame-
work of descriptive statistics does not authorize or allow us to make any predic-
tion beyond the data, because prediction lies outside the duties of descriptive 
statistics, which are to summarize existing data. Galton’s regression line in Figure 1.1 
by itself says nothing about the height relationships of other families not included 
in his 205 samples. It is true that we can hardly resist the temptation to guess 
that those unobserved families, if observed, will also be distributed near the 
line. But this irresistible feeling, to use Hume’s phrase, is just our “mental habit” 
and has no theoretical or empirical justifcation. According to the “grammar” 
of descriptive statistics, such a prediction is no diferent from, say, a superstitious 
faith in the “mystical power” of a charm that has survived numerous disasters, 
and has no place in positivist scientifc discourse. 

This may be a bold attitude, but as scientifc methodology, it is utterly 
unsatisfactory. Granted, organizing various phenomena into a well-ordered system 
and uncovering past tendencies are certainly important tasks in science. But we 
expect a lot more: in particular, we expect science to provide predictions or 
explanations of unobserved or unobservable phenomena. The pure positivist 
framework of descriptive statistics falls short in this respect. To capture this 
predictive and explanatory aspect of scientifc practice calls for a more powerful 
statistical machinery, to which we turn now. 

1.2 Inferential Statistics 

While descriptive statistics specializes in summarizing observed data, inferential 
statistics is the art of inferring and estimating unobserved phenomena. As noted 
earlier, such inductive inferences cannot be justifed from the data alone; they 
must presuppose what Hume called the uniformity of nature behind the data. 
Inferential statistics formulates this assumed uniformity in terms of a probability 
model,2 which enables a rigorous and quantitative treatment of inductive reason-
ing. Figure 1.2 illustrates the overall strategy of inferential statistics. In this 
framework, data are reconstrued as samples taken from the underlying probability 
model. Being a random process, each sampling should give a diferent dataset, 
while the probability model itself is assumed to stay invariant over the inferential 
procedure. But since the probability model is by defnition unobservable, it 
must be estimated from the given data, and this estimated probability model 
serves as the basis for predicting future or unobserved data (illustrated by the 
dashed arrow in the fgure). Inferential statistics thus deals with the problem 
of induction by introducing the probability model as a new “entity” 



 

 
 

 
 
 
 
 
 
 

 

 

 

  

   
 
 

 
 
 

18 The Paradigm of Modern Statistics 

DATA D 
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FIGURE 1.2 Dualism of data and probability models. In inferential statistics, data are 
interpreted as partial samples from a probability model, which is not 
directly observed but only inferred inductively from the data. The 
assumption that this probability model remains uniform underlies pre-
dictions from the observed to the unobserved. Whereas the concepts 
of descriptive statistics, i.e., sample statistics, describe the data-world 
below, those of probability theory (see Section 1.2.1) describe the world 
above. 

behind the data.3 In other words, it attacks Hume’s problem with the dualist 
ontology of data and models, a richer ontology than that of positivism, which 
restricts the realm of scientifc entities only to data. 

But how is this conceptual scheme put into actual practice? Two things 
are necessary in order for this ontological framework to function as a method 
of scientifc inference. First, we need a mathematical machinery to precisely 
describe the newly introduced entity, the probability model. Second, we 
need a defnite epistemological method to estimate the model thus assumed 
from the data. We will focus on the mathematical properties of probability 
models in the rest of this chapter, and save the latter question for the 
following chapters. 

1.2.1 Probability Models 

Probability models are described in the language of probability theory. Note that 
so far the word “probability” has not appeared in our discussion of descriptive 
statistics in the previous section. This is because the concept of probability 
familiar in our everyday lives belongs not to data, but to the world behind it 
from which we (supposedly) take the data. This world-as-source is called a 
population or sample space. Roughly speaking, it is the collection of all possible 
outcomes that can happen in a given trial, observation, or experiment. For 
instance, the sample space for a trial of rolling a die once consists of Ω = {1, 
2, 3, 4, 5, 6}, and if we roll it twice, it will be the product Ω × Ω. An election 
forecast, on the other hand, would take all possible voting behaviors of all the 
voters as its sample space. What we call events are subsets of a sample space. 



 

 
  
 

 
 
 

The Paradigm of Modern Statistics 19 

The event of getting an even number by rolling a die is {2, 4, 6}, which is a 
subset of Ω = {1, 2, 3, 4, 5, 6}; likewise, the event of getting the same number 
in two rolls is {(1, 1), (2, 2), . . ., (6, 6)} ⊂ Ω × Ω, which again is a subset of 
the corresponding sample space. In what follows, we denote the sample space 
by Ω and its subsets (i.e., events) by roman capital letters A, B, and so on. As 
we will see shortly, a probability measures the size of the “area” these events 
occupy within the sample space. But due to some mathematically complicated 
reasons (the details do not concern us here), we cannot count arbitrary subsets 
as “events,” because some are not measurable. There are conditions or rules that 
a subset must satisfy in order for it to count as a bona fde event to which we 
can assign a specifc probability value. The rules are given by the following 
three axioms: 

R1 The empty set ∅ is an event. 
R2 If a subset A ∈ Ω is an event, so is its compliment Ac = Ω/A. 
R3 If subsets A

1, 
A

2
, . . . are events, so is their union ∪ i iA .4 

Nothing complicated—these rules require merely that if something is an event, 
then its negation must also be an event, and if there are multiple events, then 
their combination (union) must also be regarded as an event. A set of events 
that satisfes these conditions is called a σ-algebra, but we do not have to worry 
about it in this book. In the previous example of rolling a die, the power set 
(i.e., the set of all subsets) of the sample space Ω gives a σ-algebra satisfying the 
aforementioned three conditions, and in this case any subset in the sample space 
counts as an event.5 

The probability of an event, as mentioned earlier, is its “size” in the sample 
space. The “size” is measured by a probability function P that satisfes the follow-
ing three axioms.6 

Probability Axioms 

A1 0 ≤ P(A) ≤ 1 for any event A. 
A2 P(Ω) = 1. 
A3 If events A

1
, A

2
, . . . are mutually exclusive (i.e., they do not overlap), then 

P A ˜ A ˜ . . .  P A  P A . . ..° 1 2 ˛ ˝ ° 1 ˛ ˙ ° 2 ˛ ˙ 

Axiom 1 states that the probability of any event (a subset of the sample space) 
falls within the range between zero and one. By Axiom 2, the probability of 
the entire sample space is one. Axiom 3 stipulates that the probability of the 
union of non-overlapping events/subsets is equal to the sum of their probabilities 
(this axiom justifes our analogy of probabilities and sizes). 

A probability model consists of the aforementioned three elements: a sample 
space, a σ-algebra defned on it, and a probability function. This triplet is all 



 

 
 

   
     

  

 
 
 
 

  
 

   
 

  

20 The Paradigm of Modern Statistics 

there is to probability. From this we can derive all the theorems of probability 
theory, including the following elementary facts, which the reader is encouraged 
to verify: 

T1 P(Ac) = 1 − P(A), where Ac is the compliment of A. 
T2 For any events A, B (which need not be mutually exclusive), 

P A˜ B) ° ( )˛ P B  ˝ ( ˙ ).( P A  ( )  P A B  

That is, the probability of “A or B” is equal to the sum of the probability of A 
and that of B minus that of their intersection (i.e., the probability of “A and B”). 
For simplicity, we hereafter write P(A, B) instead of P(A ∩ B). 

Conditional Probability and Independence 

Although we said that the aforementioned axioms defne all there is to probability, 
a few additional defnitions will prove useful in later discussions. The conditional 
probability of A given B is defned by: 

P A B( , ) 
P A  B( | ) = . 

P B( )  

We may think of a conditional probability as the probability of some event (A) 
given that another event (B) has occurred. In general, a probability of an event 
changes by conditioning. But when it doesn’t, so that P(A|B) = P(A), we say 
that A and B are independent. Independence means irrelevance: information about 
B gives us no new information about A when they are independent. When A 
and B are not independent, they are said to be dependent. The independence 
relation satisfes the following properties, which the reader should verify using 
the defnition just provided: 

• Symmetry, i.e., P(A|B) = P(A) if (if and only if ) P(B|A) = P(B). 
• If A and B are independent, then P(A,B) = P(A)P(B); that is, the probability 

that they both hold is the product of each probability. 

Marginalization and the Law of Total Probability 

Suppose events B
1
, B

2
, .  .  ., B

n
 partition the sample space; that is, they are 

mutually exclusive (i.e., B
i 
∩ B

j
 = ∅ for i ≠ j) and cover the entire sample 

nspace when combined ˜ ° ˙ .  Then, for any event A, we have ˛ i Bi ˝ 
n 

P A( ) ˜ P A B .˝ ° , i ˛ 
i 



 

 

 
  

 
 
 
 
 
 

 
 
 
 
 
 

   
 

  
 

   
  

The Paradigm of Modern Statistics 21 

That is, A’s “area” can be reconstructed by patching together all the places 
where A and B

i
 overlap. This is called marginalization. The terms on the right-

hand side can be rewritten using conditional probabilities to yield 

n 

P A( ) ˜ P A B P B)˝ ( | i ° ˛i , 
i 

which is called the law of total probability. 

Bayes’ theorem 

By rearranging the right-hand side of the defnition of conditional probability, 
we obtain 

P B A P A( | ) ( )
P A B( | ) = 

P B( )  

for any events A, B. This equation, called Bayes’ theorem, plays an essential role 
in Bayesian statistics, which we will discuss in the next chapter. 

1.2.2 Random Variables and Probability Distributions 

As stated earlier, events are subsets of a sample space. These events, as they 
stand, so far have no “name” and have been simply denoted by the usual subset 
notation, so that the probability of the event of getting an even number by 
rolling a die, say, is denoted as P({2, 4, 6}). Enumerating all the elements in 
this way may not cause any inconvenience in this particular example, as it has 
only three possibilities; but it may be very cumbersome when dealing with a 
much larger event, say, when we want to refer to all eligible voters in the 
sample space of all citizens. To resolve this issue, statisticians use random variables 
to identify an event of interest within the whole sample space. Random vari-
ables are (real-valued) functions defned on a sample space to indicate properties 
of objects. For example, let the random variable Y be a function that gives the 
age of a person. Then Y (Homer Jay Simpson) = 40 means that Mr. Simpson 
in the sample space is 40 years old. Now let’s assume that in a certain country 
voting rights are given to citizens who are 18 years of age or older. Then, 
using the aforementioned function, the subset “eligible voters” can be expressed 
as the inverse image {ω ∈ Ω : Y(ω ) ≥ 18}, that is, the set that consists of all 
elements ω in the sample space Ω for which Y gives a value equal to or greater 
than 18. But since this notation is still lengthy, we simply write Y ≥ 18 to 
denote the subset. Likewise, if X represents height, then X = 165 stands for 
{ω ∈ Ω : X(ω) = 165} and refers to the set of people who are 165 cm tall.7 

Now, imagine a trial where we randomly pick a subject from the 



 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

   

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

22 The Paradigm of Modern Statistics 

whole population of citizens. With this setup and our defnition of events as 
subsets of the sample space, Y ≥ 18 corresponds to the event that the selected 
person is no less than 18 years old, while X = 165 corresponds to the event 
that he or she is 165 cm tall. 

Now, since the event identifed by a value of a random variable is a subset of 
the sample space, we can assign to it a probability. The probability that the selected 
person is no less than 18 years old is P(Y ≥ 18), while the probability that she is 
165 cm tall is P(X = 165). In general, the probability that a random variable X 
has value x is given by P(X = x). With this notation and setup, P(X = 165) = 
0.03 means that the probability of selecting a person who is 165 cm tall is 3%. 
Do not get confused by the double equal signs: the frst one, X = 165, is just a 
label telling us to pick out the event that the selected person is 165 cm tall, while 
the second equal sign is the one that actually functions as an equality connecting 
both sides of the equation. But since this expression is rather repetitive, we some-
times omit the frst equal sign and simply write P(x) to denote P(X = x) when 
the relevant random variable is clear from the context. In this shorthand, P(x) = 
0.01 means that the probability of X having value x is 1%. We can also combine 
two or more variables to narrow down an event. For example, P(x, y) stands for 
P(X = x ∩ Y = y), and according to the prior interpretation, it denotes the 
probability of selecting a person who is x cm tall and y years old. 

What is the point of introducing random variables? In most statistical analyses, 
we are interested in attributes or properties of objects, like height or age. Rep-
resenting these attributes in terms of random variables allows us to express how 
the probability depends on the value of these properties; in other words, it allows 
us to reconstrue the probability function as a function that assigns probability 
values to specifc properties rather than events. The function that assigns probability 
P(x) to value x of random variable X is called a probability distribution of X and 
is denoted by P(X). Note the diference between the uppercase X and lowercase 
x. P(X) is a function that can be represented by a graph or histogram that takes 
X as its horizontal axis and the probability values as its vertical axis. On the other 
hand, P(x) or P(X = x) (recall that the former is just a shorthand of the latter) 
is a particular probability value that the function returns given the input x, and 
it is represented by the height of the function/graph P(X) at x. 

When there are two or more random variables X and Y, a function that assigns 
the probability P(x, y) to each combination of their values x, y is called a joint 
probability distribution of X and Y. This can be illustrated by a three-dimensional 
plot where P(x, y) is the height at the coordinate (x, y) on the horizontal plane 
X × Y. The joint distribution P(X, Y) contains all the probabilistic information 
about the random variables X and Y. To extract the information of just one vari-
able, say Y, we marginalize it by taking the sum8 over all values of X: 

P y( ) ˜ °P y x( ,  ). 
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Calculating this probability for each Y = y yields the distribution of Y, called 
a marginal probability distribution. 

Probability distributions are essentially the same as the probability functions 
defned in the previous section; in fact, P(x) is simply the probability value of 
the event identifed by X = x. Hence, all the axioms, defnitions, and theorems 
of probability theory carry over to probability distributions. For instance, the 
conditional probability that someone has height x given that she is y years old 
is defned as P(x|y) := P(x, y)/P(y). Likewise, when P(x|y) = P(x), or equiva-
lently, P(x, y) = P(x)P(y), the two events X = x and Y = y are independent. 
This is a relationship that holds between particular values x and y. More gener-
ally, when the independence condition P(x, y) = P(x)P(y) holds for all values 
x, y of the random variables X, Y, these variables are said to be independent. 
Note the diference between the two: the independence of values is a rela-
tionship between concrete events, whereas the independence of random 
variables is a general relationship between attributes. In terms of the previous 
example, the former only claims that knowing that a person is y years old 
does not give any extra clue as to whether she measures x cm or not, whereas 
the latter is the much stronger claim that knowing a person’s age gives no 
information whatsoever about her height—which sounds unlikely in this 
particular example, but may hold for other attributes, such as height and 
commuting time. 

Note on Continuous Variables and Probability Densities 

As we have seen in Section 1.1.1, some attributes take discrete values, while 
others take continuous values. Properties like height that vary gradually may be 
better represented by continuous variables that take real values. Continuous 
random variables, however, require a bit of caution when we consider their 
probability. Suppose X is a continuous random variable: what is the probability 
that it takes a specifc real value x, i.e., P(X = x)? Whatever x is, the answer is 
always zero. To see why, recall that a probability function is a measure of the 
size of a subset in a sample space. An element among uncountably many ele-
ments, like a point on a real line, does not have any extension or breadth, and 
so its “size” or probability must be also zero. This may make intuitive sense if 
one notes that no one has a height exactly equal to 170.000 . . . cm, no matter 
large a population we take. Thus, any particular value of a continuous variable 
has zero probability. But even in the continuous case, a certain interval, say 
between 169 and 170 cm, may have a nonzero size/probability. We can then 
consider the result of successively narrowing down this interval. The probability 
of an infnitely small interval around a point is called a probability density, and a 
function that gives the probability density at each point x is called a probability 
density function. The probability of an interval can be obtained by integrating 
this function over the interval. Letting f be the probability density function of 



 

 

  

  

24 The Paradigm of Modern Statistics 

height, the probability that a person’s height falls within the range from 169 to 
170 cm is given by: 

170 
P(169 ˜ X ˜ 170) ° ˛ ( )f x dx. 

169 

Hence, strictly speaking, one should use probabilities for discrete random vari-
ables and probability densities for continuous ones. Nevertheless, in this book 
we will abuse terminology and notation, using the word “probability” to denote 
both cases, and the expression P(X = x) to denote the probability of x when 
X is discrete and the probability density at x when X is continuous. Readers 
who are inclined toward rigor should reinterpret terminology and notation 
according to the context. 

Expected Values 

A probability distribution, as we saw, is a function of the values of a random 
variable. Since this pertains to the “uniformity of nature” that cannot be observed 
in the data, the entirety of this function is never fully revealed to us (recall that 
a sample space contains not just what happened or is observed but all the pos-
sible situations that might occur). Nevertheless, one can consider values that 
summarize this “true” distribution. Such values that are characteristics of the 
probability distribution of a given random variable are called its expectations or 
expected values. 

A representative expected value is the population mean, often denoted by the 
Greek letter μ and defned by: 

˜ ° x̋ P˛ (X ° x) 
x 

The population mean is the sum of the values x of X weighted by their prob-
ability P(X = x), and gives the “center of mass” of the distribution. In contrast, 
its dispersion is given by the population variance σ2: 

2 ˆ 2˜ ˛ (x ˝ ° ) ˙ P(X ˛ x) 

Expressed in English, this is the sum of the squared deviation (x − μ)2 of each 
value x of X from its population mean, weighted by the probability P(X = x). 

More generally, an expected value of a random variable is defned as a 
weighted sum or integral of its values (as in the case of the population mean) 
or a function thereof (as in the case of the population variance, where the 
function in question is the squared deviation). This operation is called “taking 
the expectation” and is denoted by .  For instance, the population mean is 
the result of taking the expectation of X itself, i.e., ( ) while the populationX , 
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variance is the result of taking the expectation of (X − μ)2, i.e.,  ( 
Other expected values can be defned in the same manner. 

°
˛ X ˜ ˆ )2 ˝˙ . 

At frst sight, the population mean and variance may look very much like 
sample statistics, such as the sample mean and variance reviewed in Section 1.1.1. 
They are indeed related, yet they are diferent in important ways. The primary 
diference lies in the kind of objects they purport to describe. Recall that sample 
statistics such as the sample mean are summaries of observed data or samples. In 
contrast, what we are dealing with here is not the fnite data at hand but rather 
their source, defned as a probability distribution on a certain sample space. The 
population mean and variance describe this probability model—and in this sense 
they can be thought of as extensions of the concepts of the sample mean and 
variance, redefned on the entire sample space which includes not only observed 
but also unobserved, and even unobservable, samples. Since we cannot measure 
these samples, expected values, by their very nature, cannot be known directly. 
They are, so to speak, only in the eyes of God who is able to see all there is to 
know about a probability model. 

The IID Condition as the Uniformity of Nature 

That sums up our brief review of the probability model as a “source of data.” 
In order to go beyond the given data and make inferences about unobserved 
phenomena, inferential statistics needs to posit a uniform structure behind the 
data. The concepts introduced in this section, such as the sample space, probability 
functions, random variables, probability distributions, and expected values, are 
mathematical tools we use to describe or characterize this posited structure, 
namely the probability model. 

This posited structure, however, is still an assumption. In order to make use 
of it in inductive reasoning, inferential statistics must identify this structure. How 
do we do this? As previously stated, in inferential statistics the data we observe 
are interpreted as samplings from the probability model. A crucial assumption 
in this process is that all the samples come from the same probability model. 
That is, each piece of data must follow the same probability distribution. Another 
common requirement besides this is that the sampling must be random: one 
should not, for example, disproportionately pick taller individuals, or alternate 
between picking tall and short individuals. This amounts to the requirement 
that random variables of the same type must be independent,9 so that one can-
not predict what will come next based on any particular outcome (of course, 
distinct random variables like height and age need not be independent). When 
these conditions are satisfed, a set of random variables is said to be independent 
and identically distributed, or IID for short. 

The IID condition is a mathematical specifcation of what Hume called the 
uniformity of nature. To say that nature is uniform means that whatever cir-
cumstance holds for the observed, the same circumstance will continue to hold 



 

 

 
 
 
 

  

26 The Paradigm of Modern Statistics 

for the unobserved. This is what Hume required for the possibility of inductive 
reasoning, but he left the exact meaning of “sameness of circumstance” unspeci-
fed. Inferential statistics flls in this gap and elaborates Hume’s uniformity 
condition into the more rigorous IID condition.10 In this reformulation, uni-
formity means that the probability model remains unchanged across observations, 
and that the sampling is random so that the observation of one sample does 
not afect the observation of another. Note that this kind of mathematical for-
mulation is possible only after the nature of the probability model and its 
relationship with the observed data are clearly laid out. In this way, probability 
theory provides us with a formal language that enables us to specify the onto-
logical prerequisites of inductive reasoning in mathematical terms. 

The Law of Large Numbers and the Central Limit Theorem 

The assumption of IID as a uniformity condition allows us to make inferences 
about the probability model behind the data. This is most vividly illustrated 
by the famous law of large numbers and the central limit theorem, both of 
which are part of large sample theory, the backbone of traditional inferential 
statistics. 

Let us look at the law of large numbers frst. We are interested in estimating, 
on the basis of observed data, the underlying probability distribution or its 
expected values like the population mean or variance. Suppose, for example, 
that we are interested in the mean national height. What we are able to know, 
however, are only the sample statistics obtained from a fnite set of data, such 
as the sample mean. As we have noted, such sample statistics are distinct from 
the expected values of the probability distribution, both conceptually and in 
the way they are defned. Nevertheless, it seems to be a very natural idea to 
take the latter as an estimator of the former. Of course, the mean height of just 
a handful of people will hardly serve as a reliable estimator; but if we have more 
data and measure the height of, say, millions of people, we would feel very safe 
in regarding the sample mean of this data to be a good approximation to the 
true national mean. The law of large numbers backs up this common-sense 
intuition with a rigorous mathematical proof that the sample mean will approach 
the real mean of the population as we collect more and more data. Let the 
random variables X

1
, X

2
, .  .  ., X

n
 be IID, i.e., they are mutually independent 

and have the same distribution. A typical example is the height of n people 
from the same population. Since these variables are IID, they have the same 
population mean  ˜X1 ° ˛  ̃ X2 ° ˛  ˛ ˝.  The law of large numbers then 

n 
states that as the sample size n approaches infnity, the sample mean Xn ˜ °Xi / n 
converges in probability to the population mean μ: that is, i 

lim P X ˛ ˘ ˝  ˆ ˇ 0n 
n˜° 
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holds for an arbitrarily small positive margin ϵ. The probability function on the 
left-hand side expresses the probability that the deviation of the sample mean 
X  from the population mean μ is no less than ϵ. The equation as a wholen 
thus states that this probability becomes zero as n approaches infnity, i.e., that 
it will be certain that the sample and population means coincide with arbitrary 
precision. This mathematical result provides us with the ground for roughly 
identifying a sample mean obtained from numerous observations with the 
population mean. 

Note that our only assumption was that X
1
, X

2
, .  .  ., X

n
 are IID; there was 

no restriction on the form of their distributions. This means that what is crucial 
in the law of large numbers is merely the presence of uniformity, and not the 
specifc form of this uniformity: even if the underlying distribution is completely 
unknown, the mere fact that the samples are IID or uniform ensures that, as 
we have more and more data, the probability distribution of the sample mean 
will fall within a certain range around X .  But that’s not all: the distribution n 
of the sample mean tends toward a unique form, the “bell-shaped” normal dis-
tribution. This is the result of the famous central limit theorem. Let X

1
, X

2
, .  .  ., 

X
n
 be IID variables again, this time with the population variance σ2. Then the 

theorem states that as n approaches infnity, the distribution P X˜ n °  of the 
sample mean tends toward the normal distribution with mean μ and variance 
σ2/n. We will return to the normal distribution after explaining the concept of 
distribution families; all we need to know now is that it is a particular form of 
distribution. Hence, the result here means that even though we do not know 
anything about the nature of the underlying distribution, we can know that its 
sample means tends toward a particular distribution as we keep sampling. What 
is important here is that this result is derived from the IID condition alone.11 

As in the law of large numbers, all that is required for the central limit theorem 
to hold is that the data are obtained from a uniform IID process; we need not 
know about the form or nature of the underlying distribution. From this 
assumption alone, we can conclude that the sample mean will always converge 
to the same form, namely the normal distribution. This means that we can 
make inferences about the unknown probability model just by repeated sampling. 
In this way, the results of large sample theory such as the central limit theorem 
and law of large numbers provide us with a theoretical justifcation of the agenda 
of inferential statistics, which is to make inductive inferences about the true but 
unobservable distribution on the basis of fnite and partial observations. 

1.2.3 Statistical Models 

What Statistical Models Are 

Let us take stock of our discussion so far. In order to build a framework for 
inductive inference, a kind of inference that goes beyond the given data, we 
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began by defning a probability model, which is the uniformity behind the data. 
Then we introduced random variables as a means of picking out the events 
corresponding to properties that we are interested in, and saw that they have 
certain defnite distributions. Although these distributions are unknown and 
unobservable, they can be characterized in terms of expected values, and we 
saw that these expected values can be approached, with the aid of large sample 
theory, through repeated samplings that satisfy the IID condition. 

But this doesn’t settle all the inductive problems. Large sample theory 
provides us only with an eschatological promise, so to speak: it guarantees 
only that if we keep collecting data indefnitely, then the true distribution 
will eventually be revealed. Hence, if we could keep tossing the same coin 
infnitely many times, the observed ratio of heads would converge to the true 
probability. It is impossible, however, to actually conduct an infnite number 
of trials, since the coin will wear out and vanish before we complete the 
experiment. “In the long run we are all dead,” as Keynes said, and given that 
we can collect only fnite and in many cases modest-sized data which fall far 
short of “large samples” in our lifetime (or the time we can spend on a par-
ticular inductive problem), a statistical method, if it is to be serviceable, must 
be able to draw inferences from meager inputs. Such inferences may well be 
fallible and may not give probability-one certainty as the law of large numbers 
does. What becomes important, therefore, is a framework that enables us to 
carry out inductive inferences as accurately as possible and to evaluate the 
reliability of these inferences, even within the bounds of limited data. The 
true value of inferential statistics consists in the development and elaboration 
of such earthy statistical methods. 

To achieve this goal, inferential statistics introduces additional assumptions 
beyond the basic setup of probability models. Our approach to inductive rea-
soning up until now relied on a probability model and IID random variables, 
but made no assumptions about the nature or type of the distribution that 
these variables have. Or, in Humean parlance, so far we only required the 
presence of the uniformity of nature, without caring about what nature is like. 
In contrast, the more realistic inference procedure we are now after makes 
some further assumptions about the form of the distribution, thereby narrowing 
down the range of possible distributions to be considered. So-called parametric 
statistics, for instance, deals only with those distributions that can be explicitly 
expressed in terms of a particular function determined by a fnite number of 
parameters.12 

It therefore requires not only the existence of uniformity in the form of a 
probability model, but also that the uniformity is of a certain pre-specifed kind 
(that is, it has a specifc functional form). A set of candidate distributions cir-
cumscribed in this way is called a statistical model. It is important not to confuse 
statistical models with probability models, as the distinction will be essential in 
understanding inferential statistics. Probability models, we may recall, were 



 

 

 

 
 
 

 
 
 
 
 
 

The Paradigm of Modern Statistics 29 

introduced in order to describe the reality that supposedly exists behind data, 
using the language of probability theory such as sample spaces, σ-algebras, 
probability functions, random variables, and probability distributions. A statistical 
model, on the other hand, is just a hypothesis about the nature of the probability 
distribution that we posit, and may well be regarded as fctional. The true 
probability distribution may be highly complex, hardly specifable by a simple 
function with only a few or even a fnite number of parameters. Nonetheless, 
we pretend for our immediate purposes that it has a particular functional form, 
and we proceed with our inferential business under this hypothesis. 

At this point an attentive reader may raise their eyebrows and ask: “But 
wasn’t a probability model or uniformity of nature also a hypothesis, not ame-
nable to empirical confrmation? If that’s the case, then probability models and 
statistical models are both hypotheses after all, so there doesn’t seem to be any 
substantive distinction between them.” It is true that, if we had to say whether 
they are realities or assumptions, then they are both assumptions. They difer, 
however, as to what kind of thing they are assumed to be. A probability model 
or uniformity of nature is assumed to be true: as long as we are to make any 
inductive inferences, we cannot but believe in the existence of some unifor-
mity—that was Hume’s point. This is not so, however, with statistical models. 
In fact, most statisticians do not believe that any statistical model faithfully 
describes the real world; rather, they expect it to be only an approximation— 
that is, a model—good enough for the purpose of solving their inductive tasks. 
In other words, a statistical model is not assumed to be a true representation 
of the world, but an instrument for approximating it. This instrumental nature 
of statistical models is aptly captured by the famous aphorism of the statistician 
George Box: “all models are wrong, some are useful.” In contrast, the very 
existence of a probability model cannot be a fction; otherwise, we would be 
trapped in Humean skepticism and lose all grounds for inductive reasoning.13 

Parametric Statistics and Families of Distributions 

There are two ways to build statistical models. So-called nonparametric statistics 
makes fairly general and weak assumptions such as the continuity or diferentia-
bility of the target distribution, without imposing any specifc functional form 
on it. Parametric statistics, on the other hand, goes a step further and specifes 
the general form of the distribution in terms of a particular function. Such a 
distributional form is called a family of distributions. Once a family is fxed, indi-
vidual distributions are uniquely determined by specifying its parameters. This 
means that parametric statistics models the target only within the range of a fxed 
family of distributions. It therefore has a higher risk of distorting reality, but 
allows for more precise and powerful inferences if an appropriate distributional 
family is chosen. The question of which family to use depends on the nature 
of the inductive problem and random variables we are interested in. Since this 
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FIGURE 1.3 Examples of distributions. The horizontal and vertical axes represent 
values of random variable X and their probabilities, respectively. 
(a) Uniform distribution that assigns the same probability to all faces of 
a die. (b) Bernoulli distribution with θ = 0.6. (c) Binomial distribution 
with θ = 0.5, n = 10. (d) Normal distribution with μ = 0, σ 2 = 1. 

book will mostly focus on parametric statistics, it should be useful at this point 
to look at some of the representative distributional families (see also Figure 1.3). 

Uniform distribution 

A uniform distribution assigns the same probability to all values x
1
, x

2
, .  .  . of a 

random variable X. For example, if X is the result of rolling a fair die, we have 
a uniform distribution with P(X = x) = 1/6 for x = 1, 2, .  .  ., 6. When X is 
a continuous variable ranging from α to β, its uniform distribution is 

1
P X ˜ x) ˜ ,( 

°˛ ˝  

and is uniquely determined by the parameters α, β. In this book we follow the 
common practice of denoting the parameters of a distribution by Greek letters, 
and variables by Roman letters. 
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Bernoulli distribution 

Let the random variable X stand for the outcome of a coin toss, with X = 0 
representing tails and X = 1 heads. If the probability of landing heads is P(X = 1) = θ, 
the distribution of X is 

x 1°xP X ˜ x) ˜ ˛ ( °˛ ) .( 1 

Note that x = 0 or 1, so the right-hand side becomes 1 − θ if x = 0 (tails) 
and θ if x = 1 (heads). In this case, X is said to follow a Bernoulli distribution. 
The mean and variance of a Bernoulli distribution are θ and θ(1 − θ), respec-
tively, and the distribution is determined by the single parameter θ. 

Binomial distribution 

Next, consider an experiment where we toss the same coin 10 times and count 
the number of heads. Let X be the number of heads we get in these 10 trials. 
What is its distribution? To answer this question, we examine the probability 
of each possible outcome in 10 tosses, i.e., the probability of no heads, 1 head, 
2 heads, and so on. First, the probability of X = 0 (no heads) is 

(Probability of heads)0(Probability of tails)10 = θ0(1 − θ)10 = (1 − θ)10. 

Next consider X = 1. The probability of getting heads in only the frst toss 
and tails thereafter is 

(Probability of heads)1(Probability of tails)9 = θ1(1 − θ)9 = θ(1 − θ)9. 

Now this is the same as the probability of getting heads in just the second, third, . .  ., 
or the 10th toss. Thus, by summing up all 10 of these cases, we obtain the probability 
of getting 1 head out of 10 trials. In general, the probability of getting x heads is 

x 10°xP X ˜ x) ˜ C ˛ ( °˛ ) ,( 10 x 1 

10Cx ˜ 10!
where  is the number of ways of choosing x out of 10 

x !(10 ° x)! 
things. Replacing the 10 in the preceding equation with n gives us the probability 
of getting x heads out of n coin tosses. 

The distribution derived in this way is called a binomial distribution. The mean 
and variance of a binomial distribution are known to be nθ and nθ(1 − θ), 
respectively. That is, the binomial distribution is completely determined by the 
probability of each trial θ and the total number of trials n. 

Normal distribution 

The normal distribution is arguably the most famous family of distributions, and 
we have already encountered it in Section 1.2.2. Unlike Bernoulli and binomial 
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distributions, the normal distribution concerns a continuous variable and is 
expressed by the equation 

1 ˛̇ (x ° � )2 ˇ̇
P X ˜ x ˜ exp ̋  2 ˘( ) ° , 

2�� 2 ˆ̇ 2� �̇ 

with two parameters µ and σ 2, which respectively defne the mean and variance 
of the distribution. Though not obvious at frst sight, plotting this equation 
generates the well-known bell curve, symmetric about the mean. 

We have seen that the probability of getting a particular number of heads in 
multiple coin tosses is given by a binomial distribution. What happens if we 
continue tossing and increase the number n of tails? It will still be a binomial 
distribution with large n, but lo and behold, its shape comes closer to that of a 
normal distribution. This efectively exemplifes the central limit theorem discussed 
earlier. In efect, a binomial distribution is nothing but the distribution of the 
sum of repeated Bernoulli trials; hence, as the number of repetitions increases, 
it asymptotically approaches a normal distribution. As previously stated, the same 
result holds not just for Bernoulli distributions but also for basically any distribu-
tion. From this we can expect that a property determined by the cumulative 
efects of a number of small factors will follow a normal distribution—typical 
examples being height and weight, which are presumably afected by numerous 
genetic as well as environmental factors. Partly for this reason, the normal dis-
tribution is very general and plays an important role in statistics. 

Multivariate Normal Distribution 

Finally, let us take one example from bivariate joint distributions. If two random 
variables X, Y both follow normal distributions, their joint distribution is called 
a multivariate normal distribution and is expressed by 

˙
1 ˇ 1

P X ˜ x Y, ˜ y) ˜ exp ̂( ° 
2 22�� � 1 ° � ˇ 2 1˛ ° � ˝X Y ˘ 

� ˛x ° �X ˝
2 ˛y ° �Y ˝

2
2� ˛x ° �X ˝˛y ° �Y ˝ �ˇ� 

2 ° .� 
� � � 2 � �  X Y X Y�

This may look a bit scary, but there’s no need to be afraid. The key is to see 
that the right-hand side is a function of x and y. This distribution has fve 

2 2parameters, the mean µ
X
 and variance σ X  of X, the mean µ

Y
 and variance σY 

of Y, and the population correlation coefcient ρ of X and Y. These fve 
parameters specify the functional form and determine how the probability value 
(or, to be precise, probability density) depends on the values x, y. 
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The means and variances, as we have seen, respectively give the centers of 
mass of and dispersions of X, Y. The population correlation coefcient ρ, in 
contrast, represents the strength of association between X and Y within the 
range from −1 to 1. Although this may look similar to the correlation coef-
fcient described earlier as descriptive statistics, they difer in crucial respects. 
The point here is similar to the cautionary remark made previously about 
expected values. The correlation coefcient understood as a sample statistic, 
as we have seen, measures an association among observed data and is explicitly 
calculable. In contrast, the population correlation coefcient concerns the 
underlying probability distribution and is supposed to capture the correlation 
inherent in the entire population, including unobserved items. As such, the 
population correlation coefcient, and in general any other parameter, 
denotes—or, more precisely, models (because a statistical model is a model of 
the underlying distribution)—a hypothesized property of the population behind 
the data, but is not something visible or observable. Thus, sample statistics 
and parameters belong to diferent “ontological levels,” as it were, and for this 
reason should not be confused. 

The families of distributions mentioned in this section are just a tiny sample. 
Other representative distributional families include the Poisson, exponential, 
chi-squared, t, and beta distributions, to name just a very few. Information 
about these and other distributions can be found in any standard textbook or 
website. 

Presupposing a particular family of distributions signifcantly facilitates statisti-
cal inference. As stated earlier, most statistical inferences involve, in one way or 
another, estimations of the probability distribution behind the data. Hence, if 
the target distribution can be assumed to belong to a particular distributional 
family, the whole inferential task is reduced to an estimation of a fnite number 
of parameters. Once a particular variable, say height, is known to have a normal 
distribution, its statistical properties can be completely determined just by esti-
mating its mean and variance. (If, in contrast, all we can assume is that the 
distribution is continuous and smooth, we need to estimate infnitely many 
parameters to attain a complete picture of it.) Parametric statistics thus translates 
statistical hypotheses into those about the parameters of a distribution, and then 
solves the inductive problem by inferring these parameters from the data. 

Specifying the functional form of a distribution brings with it another 
important beneft: it enables us to explicitly calculate the likelihood, or the prob-
ability of obtaining the data under various hypothetical parameters. For instance, 
given that heights follow a normal distribution, the probability that someone’s 
height is between, say, 145 and 150 cm can be calculated by integrating the 
aforementioned normal distribution function with a specifc mean and variance. 
In the following chapters, we will see that this concept of likelihood is ubiq-
uitous and plays a central role in Bayesian statistics, hypothesis testing, model 
selection, and machine learning. 
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1.2.4 The Worldview of Inferential Statistics 
and “Probabilistic Kinds” 

This concludes our brief review of the theoretical framework of inferential 
statistics. The framework introduced in this chapter serves as the ontological 
foundation for inferential statistics. That is, it tells us what kinds of entities must 
be postulated and how they should be described in order to carry out inductive 
inferences using statistical methods. But why use probability theory to express 
such ontological machinery? This is because the mathematical formalism of the 
theory enables us to assess the ontological assumptions that are necessary for 
tackling a given inductive task. The minimum condition for inductive inference 
is the assumption of a probability model or uniformity of nature, which, along 
with the law of large numbers, guarantees that enumerative induction14 will 
eventually converge to the correct answer in the long run. If we are more 
realistic and want to make an inference based on a fnite sample and evaluate 
its accuracy, the target distribution must be specifed in terms of a statistical 
model. And if we want to make more efective predictions or inferences based 
on a limited sample size, we need to resort to parametric statistics and specify 
the type of uniformity we postulate in terms of a particular family of distribu-
tions. In this way, stronger ontological assumptions allow for more efective 
inductive inferences, and this becomes most explicit in the mathematical 
formulation. 

Ever since Hume, philosophers have devoted their attention almost exclusively 
to the validity of the most fundamental of these ontological conditions, i.e., the 
question of whether there exists a uniformity of nature. This basic premise, 
however, is rarely doubted by statisticians. They are rather concerned with the 
nature of the uniformity, that is, the assumption of a particular distributional 
family. The appropriate type of regularity or uniformity should difer according 
to the problem and object under study. At the same time, the same uniformity 
assumption may be applicable to situations of a quite diferent nature. There 
seems to be nothing in common, at least from a physical perspective, between 
a coin toss and the genital formation of fetuses. Nevertheless, their uniformity 
can be modeled by the same Bernoulli family of distributions (albeit perhaps 
with diferent parameters), so we can use the same kind of distribution to predict 
which team kicks of frst and whether a newborn baby will be a girl or boy. 
Nay, it would be more appropriate to say that it is through the lens of the 
Bernoulli distribution that we can regard these physically diferent things as the 
same kind of thing in the context of inductive inference. On the other hand, 
while rolling a die seemingly has much more in common with tossing a coin 
than with human development, it calls for a diferent distributional family from 
the coin toss; that is, statistically speaking, they are regarded as diferent kinds 
of things. Likewise, other families of distributions, such as binomial or normal 
distributions, represent diferent types of uniformity. There are varieties of 
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regularity and uniformity in nature: distributional families defne these “variet-
ies” in a functional form and classify various inductive problems into specifc 
categories, so that tasks within each category are regarded as the “same kind” 
of statistical problem, even if they are numerically or physically distinct. In this 
sense, the choice of a particular family of distributions refects a modeler’s 
ontological assumption, as it determines what kind of “thing” the task under 
study is. 

Turning our eyes to our everyday cognitive processes, we realize that we 
rarely, if at all, see the world as it is “in itself,” whatever that means. Rather, 
the world always appears to us as already articulated, segmented into discrete 
objects. In front of me now are a desk, a laptop, and a bookshelf. Turning to 
the window, I see the university clock tower, on which a crow is perched. I 
thus recognize the world as consisting of the desk, the laptop, the bookshelf, 
the clock tower, the crow, among other things. Each of these things, carved 
out from the world by my cognitive processes, has its own particular properties, 
on the basis of which I am able to make inferences. For instance, since the desk 
is sturdy, I can use it as a step to pick out a book on the upper shelf, but I 
can’t use the laptop for this purpose; if I want to know the time I should look 
at the clock but not the crow; and so on. These discrete units, which we assume 
to populate the world, and on the basis of which we think and carry out infer-
ences, have been called natural kinds by philosophers. Natural kinds are the basic 
units not only of our mundane reasoning, but also of sophisticated scientifc 
thinking. Chemists categorize various materials into chemical kinds such as 
carbon, gold, and argon, and explain chemical reactions in terms of the proper-
ties of these elements. Biologists classify all living things into distinct species 
and study the ecological, behavioral, physiological, and genetic characteristics 
of each species. These chemical elements and biological species defne natural 
kinds in chemistry and biology, respectively.15 

The foregoing implies two things. First, “the world” investigated by each 
scientifc feld is (or is conceived to be) constituted from those things that are 
regarded as natural kinds in that particular feld. The world according to the 
chemist is the totality of chemical reactions among various elements, while in 
the eyes of the biologist, the world appears as a kingdom of all the diferent 
kinds of living creatures. Second, the way the world is articulated may well 
difer from one scientifc context to another. From a chemical perspective, I 
am distinct from you because we clearly difer in the constitution, amount, and 
ratio of chemical substances that compose our bodies. From a biological per-
spective, however, you and I (I believe) are both members of the same Homo 
sapiens species, and in this respect we are no diferent. This is not necessarily 
to say that the chemist’s picture is fner grained and more precise, while biology 
gives us only a rough and vague sketch. For one thing, some inferences become 
possible only by abstracting from the fner diferences. For instance, if I feel safe 
taking an approved drug that has passed clinical trials, this is only because I 
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believe I belong to the same human species as the participants of the trials, so 
that the drug should exercise similar efects on me, including collateral ones. 
If, in contrast, I am too strict and deny any commonality between myself and 
the trial participants because all humans difer at the molecular level, I could 
not hope for any general knowledge about human beings. In this way, natural 
kinds provide us not only with an articulation of the world, but also with the 
ontological identity criteria according to which we judge what is the same as 
or diferent from something else, thereby underpinning our inferential and 
explanatory practices both in mundane and scientifc contexts. 

Now going back to statistics, the preceding discussion suggests that distribu-
tion families serve as natural kinds in statistics. For this reason, I propose to call 
them probabilistic kinds. Just as chemists explain various reactions by positing 
chemical elements, statisticians explain regularities in data by postulating proba-
bilistic kinds. Just as a chemical element is identifed by its atomic weight and 
electron arrangement, a probabilistic kind is characterized by its parameters. 
And just as chemists study various materials by determining their constituent 
elements, statisticians solve inductive tasks by reducing them to a particular 
probabilistic kind. The only diference is that while chemical kinds are fully 
determined by their physical basis, probabilistic kinds are not necessarily so. As 
we saw earlier, the choice of an appropriate family of distributions depends not 
so much on the physical setup of a given inductive problem as it does on its 
context and the way it is framed. Or, in philosophical jargon, probabilistic kinds 
do not supervene on their physical components.16 Recall that we modeled a coin 
toss by a Bernoulli distribution. That was because we supposed the coin will 
land either heads or tails and ignored the possibility of its landing on its edge. 
If we are to take the latter possibility into account, we should use a multinomial 
distribution with three categories. As this example shows, the question of which 
statistical model we should use is not just determined by the physical nature of 
the object under study, but rather depends on the modeler’s interests and inten-
tions. This, however, by no means prevents probabilistic kinds from being 
“natural.” For, as we have already seen, the choice of natural kinds also refects 
the scientist’s interests, with the consequence that the world is articulated dif-
ferently depending on the scientifc context and questions being asked. The 
important point is that probabilistic kinds furnish the basic building blocks of 
inferential statistics, in terms of which statisticians frame inductive problems and 
predict the future. Some examples of probabilistic kinds that were introduced 
in this section include the Bernoulli, binomial, and normal distributions, but it 
should be emphasized again that this is just a very small sample. Figure 1.4 is 
a visual map of (some, not all) families of distributions and their mutual rela-
tionships (Leemis and McQueston 2008). This may look daunting to some, but 
its signifcance may become clearer if you take it as a kind of “periodic table” 
that exhibits the glorious results of statisticians’ attempts to pin down the essences 
of a variety of inductive problems. Had Mendelejev’s periodic table contained 



The Paradigm of Modern Statistics 37 

FIGURE 1.4  Various families of distributions as illustrated by Leemis and McQueston 
(2008). In the upper right you can fnd the three distribution families discussed 
in this section. Reprinted by permission of Taylor & Francis Ltd, http:// 
www.tandfonline.com on behalf of American Statistical Association. 

only a few atoms, chemistry would have been incomplete and insufcient. 
Likewise, if we had only the binomial and normal distributions, the study of 
statistics surely would have been much easier, but as a discipline it would have 
been meager and devoid of practical applicability. 

Let’s wrap up. We began this section by noting that to tackle the problem 
of induction, inferential statistics adopts a dualistic ontology, in which a probability 
model is posited as a uniform structure behind the data. Parametric statistics 
further articulates this posited uniformity/probability model in terms of 

http://www.tandfonline.com
http://www.tandfonline.com
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probabilistic kinds, which are represented by specifc functional forms (families 
of distributions). Just as chemists explain reactions in terms of chemical elements, 
statisticians solve inductive problems by reducing them to appropriate probabilistic 
kinds. 

The world is segmented into natural kinds, and the goal of science is to 
identify and exploit these kinds for the purpose of inference and explanation— 
this idea may sound commonsensical, if not a banal truism, to some. However, 
the claim is not as innocent as it might appear. For one thing, it does not square 
well with the empiricist philosophy, or in particular with the positivism discussed 
in the previous section. This is because believing in natural kinds seemingly 
amounts to postulating latent substances that go beyond individual phenom-
ena—like a “gold itself ” that cannot be reduced to any particular instance of 
gold—and aiming to explain the individual phenomena in terms of these idealistic 
postulates. We will not go into the philosophical debates over natural kinds 
here,17 but we should recall that it was precisely this kind of realist idea—that 
there are entities that go beyond concrete, tangible phenomena—that was the 
target of the positivist expulsion spearheaded by Mach and Pearson. 

It is not without reason that empiricists try to avoid natural kinds. The 
assumption of natural kinds behind the data commits one to a richer ontology 
that postulates more entities than does empiricism or positivism. One cannot, 
however, just make a postulation and leave. Realists bear the burden of provid-
ing an epistemological method for probing such “latent entities” from experience, 
which is surely a challenging enterprise. In the present statistical context, one 
must provide a method that allows us to select the appropriate distributional 
family, examine and justify the choice, and furthermore estimate its parameters 
for a given inductive task. The essence of inferential statistics consists in this 
epistemology, i.e., the art of making inferences about the underlying probability 
model on the basis of observed data. This inferential methodology comes in 
various styles, each forming a distinct statistical tradition such as Bayesian sta-
tistics, classical statistics, model selection, and so on. The next three chapters 
will focus on each of these schools, with particular emphasis on their episte-
mological character. 

Further Reading 

There are so many textbooks on statistics. Here I pick just a few: the most 
concise (Hand 2008) and the more comprehensive (Wasserman 2004; Efron and 
Hastie 2016). Vaughan (2013) gives a good summary of descriptive statistics, 
probability theory, random variables, and so on. The historical development of 
statistics is documented by Stigler (1986), Hacking (1990, 2006), and Salsburg 
(2001). Salsburg’s book is fun and readable, but it has also received some criti-
cism (Porter 2001). Hacking is also known for his seminal work on the philosophy 
of statistics (Hacking 2016). The Stanford Encyclopedia of Philosophy (https://plato. 
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stanford.edu/index.html) should cover most of the philosophical concepts that 
appear in this and the following chapters, including positivism, natural kinds, 
and so on. 

Notes 

1. It is also common to use n − 1 instead of n for the denominator of the sample vari-
ance, so that it is an unbiased estimator of the population variance (an unbiased 
estimator is an estimator whose expected value equals the true value of the estimand). 
This also applies to other statistics such as the sample covariance. 

2. This terminology calls for a cautionary remark. In this book we follow the conven-
tion in probability theory and defne a probability model as a triplet consisting of a 
sample space, an algebra thereof, and a measure (probability) function. Some statistics 
textbooks, however, call this the “true distribution” and use the term “probability 
model” to denote a model of this true distribution, or what we will later call a 
“statistical model.” The reason we adopt the probability-theoretic convention is 
because the assumption that a given inductive problem can be expressed in terms 
of a certain probability distribution already involves probabilistic modeling (after all, 
the uniformity of nature is nothing but a model). In this parlance it becomes crucial 
to sharply distinguish probability models from statistical models, as will be stressed 
in Section 1.2.3. 

3. Reichenbach (2008), in his doctoral thesis originally published in 1916, took a prob-
ability model as a theoretical posit that allows for inductive reasoning. I thank Clark 
Glymour for the pointer. 

4. Here the number of the subsets in the antecedent A
1
, A

2
, .  .  . may be infnite (but 

must be countable). The same is true with the probability axiom A3, described next. 
5. One might then wonder: why not use power sets all the time rather than introduce 

the esoteric σ-algebra? Indeed, power sets will work when the sample space is fnite, 
but not when it is uncountable, as in the real interval. The power set of an uncount-
ably infnite set is too large and rife with pathological subsets whose size cannot be 
meaningfully measured. This is why we need to limit the range of events to the 
well-behaved σ-algebra. A set equipped with a σ-algebra is called a measurable space, 
because we can meaningfully measure the size of its parts. 

6. Note that this is a function not from Ω but from a σ-algebra defned on Ω to [0, 1], 
because it assigns a value to subsets of Ω. 

7. We will use this common notation throughout this book, but it may be confusing 
at frst. The equal sign here difers from its standard usage of asserting the equality 
of the left- and right-hand sides. Thus, X = 165 does not mean “X is 165,” but 
rather “the set of elements for which X gives the value 165.” 

8. Here ∑ 
x
 means the sum over all possible values of X. If X is continuous, the sum is 

˛ 
replaced with an integral: P y( ) ˜ P y x d( , ) .x  However, we will not distinguish the ˝°˛ 
two cases in this book. The meticulous reader should read the summation symbol as 
an integral in the case of continuous random variables. 

9. A bit more precisely, for data with n samples we consider a sequence of n random 
variables, and the requirement is that these random variables are independent. 

10. Note that not all statistical inferences depend on the IID condition. Samples from a 
time series or data with a spatial structure, for example, are most likely not 

https://plato.stanford.edu
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independent. Even in such cases, however, it is commonplace to assume some uniform 
structure in the form of a probability model. 

11. This is actually not entirely correct. The central limit theorem assumes that the 
population mean and variance of the underlying distribution are well-defned and 
non-divergent. Some distributions such as the Cauchy distribution do not satisfy these 
conditions. 

12. While parameters are sometimes confused with expected values, the two should be 
distinguished. As we discussed earlier, expected values are properties of a probability 
model that is unknown but presumed to exist, while the parameters of a distributional 
family identify a hypothetical and arguably fctional statistical model. They match 
numerically only when the distributional hypothesis is true, but even in such cases 
they are conceptually distinct. 

13. The discussion here is reminiscent of Nancy Cartwright’s entity realism. Cartwright 
(1983) argues that while objects of physics like electrons and quarks exist, the fun-
damental laws about their properties and behavior are idealized and simplifed, and 
hence, strictly speaking, false (or as she puts it, “lies”). Likewise, one can say that 
although probability models qua uniform objects exist in nature, the statistical models 
that express their distribution in an idealized and simplifed form are “lies” or, to use 
Box’s word, “wrong.” 

14. Enumerative induction is a type of inductive inference that aims to confrm a general 
proposition through repeated observations. For instance, concluding that all ravens 
are black based on numerous observations of black ravens is an example of enumera-
tive induction. 

15. There are, however, debates in the philosophical literature regarding the ontological 
status of chemical elements and biological species, including whether they really 
constitute natural kinds; see Sober (1980) and Boyd (1999). 

16. When one thing or property is fully constituted by other things or properties, the 
former is said to supervene on the latter. For instance, color is said to supervene on 
the wavelength of light, and the temperature of a gas on the mean kinetic energy of 
its particles. 

17. A longstanding question that has especially been the subject of extensive debate is 
whether natural kinds exist objectively on the side of the world, or are theoretical 
constructs of particular scientifc theories—a question that dates back to the medieval 
problem of universals. In this book I adopt a view closer to the latter, but without 
attempting to justify it. Interested readers are referred to Bird and Tobin (2018). 



 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

2 
BAYESIAN STATISTICS 

In the previous chapter we introduced the ontological basis of inferential statistics 
and discussed the respective roles of probability models and statistical models. A 
probability model embodies the “uniformity of nature” that goes beyond what 
is observed and serves as a theoretical ground for making inferences about unob-
served data. A statistical model or “probabilistic kind” is a further model of this 
presumed uniformity, expressed in a familiar functional form. Statistical inferences 
then proceed by making hypotheses about the parameters of these posited models, 
which are to be estimated and assessed vis-à-vis the observed data. Our next 
task is to take a closer look at this inferential procedure, and this is where we 
encounter the frst point of divergence. As announced, the interpretation and 
methodology of statistical inference—namely, what counts as an inference and 
how it should be carried out—vary among diferent statistical schools such as 
Bayesian statistics, classical statistics, and model selection. A particularly notable 
and historically important diference is the one between Bayesian statistics and 
so-called classical statistics. Roughly speaking, in Bayesian statistics a probability 
expresses the degree of certainty of a given hypothesis and is to be updated on 
the basis of data; whereas in classical statistics a probability expresses the frequency 
of data, on the basis of which statisticians make a defnitive judgment about the 
hypotheses under consideration. This chapter takes up Bayesian statistics, frst 
giving a brief overview of its methodology and then examining its philosophical 
implications. Classical statistics will be examined in the next chapter. 

2.1 The Semantics of Bayesian Statistics 

As mentioned earlier, in Bayesian statistics inductive reasoning is understood as 
a process of updating the degree of certainty of hypotheses on the basis of data. 
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42 Bayesian Statistics 

But before implementing this idea, a bit of preparation is in order. That is, we 
need to interpret the mathematical apparatus of probability models introduced 
in the previous chapter within the actual context of inductive reasoning, so as 
to make clear what probability is in the frst place. Both probability models and 
statistical models are our theoretical constructs, or, to be more precise, mathemati-
cal entities defned within a set-theoretic framework. Such mathematical con-
structions allow us to explore, among other things, the formal properties of 
probability distributions and the limiting behaviors of certain estimators through 
rigorous derivations. But in order to apply these mathematical results to concrete 
problems, we have to interpret the abstract models and make clear what in the 
real world they represent. Such interpretive work is a prerequisite for any scientifc 
investigation that uses models, not just mathematical ones but of all sorts. If an 
astronomer wants to use a diferential equation model to predict planetary orbits, 
or if a molecular biologist wants to explain the hereditary mechanism using the 
double helix model, they must specify what is represented by each component 
of their models, and to which aspect of their target systems it corresponds. The 
same holds for probability models. In the previous chapter we defned probability 
as a function that measures the “size” of an event, or subset of a sample space, 
in terms of a real number ranging from zero to one. But what does this 
“size” of a set measured in numbers stand for? An intuitive answer would be 
that it measures how “likely” an event is to occur. This, however, is far from 
satisfactory—since events on a sample space are by defnition just sets, it hardly 
makes sense to say that such mathematical entities are “(un)likely to occur.” Even 
if we put this aside, the very meaning of “likelihood” (here we are using this 
term in the common English sense, as a synonym of chance, not as a technical 
term to be defned shortly) is not clear at all. When we say that something is 
likely to occur, are we talking about an objective property that it has by itself, 
and if so, what kind of property is this? Or if likelihood is a subjective property, 
who is the subject, and how should it be determined? 

Thus, if we are to understand how and why the mathematical apparatus 
introduced in the previous chapter can ever be applied to real-world inductive 
problems, we need to clarify the semantics of probability, or what probability 
actually means. This is where the frst philosophical confict emerges. The 
probability-theoretic ontology introduced in the previous chapter is a common 
premise of inferential statistics in general. However, there are diferent interpre-
tations as to its semantics—what in the real world these mathematical posits 
represent—which in turn form the bases of the two major epistemological 
approaches in inductive inference, namely Bayesian and classical statistics. Roughly 
speaking, Bayesian statistics usually interprets probability as a subjective degree 
of belief, while classical statistics takes it as the objective frequency of an event’s 
occurrence. For this reason, the former has traditionally been called subjectivism 
(or more commonly Bayesianism, which is taken to imply the subjectivity of 
probability), and the latter frequentism. 
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These labels capture a contrast between the two approaches in one respect, 
but they are misleading in another. In particular, they may blur the important 
distinction between semantics and epistemology. While the questions of what 
probability is and how it should be interpreted are semantic in nature, the main 
disagreement between Bayesian statistics and classical statistics is epistemological 
and concerns the proper methodology of inductive inference. These questions— 
semantic and epistemological—are logically distinct, so there is no contradiction 
in, say, interpreting probability values in classical statistics in a subjectivist fashion. 
That being said, it is still true that semantics (subjective/objective) and episte-
mology (Bayes/classical) are deeply intertwined. For this reason, in this and the 
following chapters, we introduce the subjective and frequentist interpretations 
of probability as the semantics for Bayesian and classical statistics, respectively. 
But the reader should bear in mind the conceptual distinction between semantics 
and epistemology. 

With this in mind, let’s begin with the subjective interpretation of probabil-
ity. First, we attach a meaning to the sample space. The sample space for 
Bayesians is a collection of various propositions. For instance, the sample space 
of rolling a die once, Ω = {1, 2, .  .  ., 6}, consists of propositions such as 
“the 1-face is up,” “the 2-face is up,” .  .  . “the 6-face is up.” Let us denote 
the proposition “the i-face is up” by A

i
. Events are formed by attaching logical 

connectives to these atomic propositions. The event of getting an even number, 
say, is the composite proposition A

2 
∨ A

4 
∨ A

6
, while that of getting a number 

other than 1 is ¬A
1
. We expect these events to satisfy the rules we saw in 

the previous chapter. Restated in the framework of propositional logic, those 
rules become: 

R1 A contradiction1 ⊥ is an event. 
R2 If proposition A is an event, so is its negation ¬A. 
R3 If propositions A , A , . . . are events, so is their disjunction A ∨ A ∨ . . .

1 2 1 2 

or A or . . .).(A
1 2 

That is, a set of composite propositions that qualify as events are closed under 
negation and disjunction (and hence, under conjunction, too). From R1 and 
R2, a logical truth or tautology ⊤ also counts as an event and corresponds to 
the total event (Ω itself ). A set of events that satisfy the above rules is called a 
Boolean algebra. The algebra of a probability model in the subjective interpreta-
tion of probability, therefore, is a Boolean algebra. 

A probability function is then a function that assigns a number from zero 
to one to a proposition-event in such an algebra. Under the subjective inter-
pretation, a number given by such a function represents the degree of belief of 
an epistemic agent toward the corresponding proposition. We will come back 
to this concept shortly; for now, the degree of belief that a certain person has 
in a proposition can be understood as the strength with which that person 
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believes in the truth of the proposition. The probability axioms under this 
interpretation are: 

A1 0 ≤ P(A) ≤ 1 for any proposition A. 
A2 P(⊤) = 1. 
A3 If propositions A , . . ., A  are not consistent, so that A ∧ A ⇐⇒ ⊥ for

1 n i j 

1 ≤ i < j ≤ n, then 

P A˛ ˜ A ˜° P A ˝ ˆ P A˛1 2 ˝ ˙ ˛ 1 2 ˝ ˆ°. 

A1 says that any degree of belief lies between zero and one. According to 
A2, a logical truth has the maximum degree 1, which indicates absolute 
certainty. Finally, A3 states that the degree of belief for the possibility that 
at least one of a mutually inconsistent set of propositions is true must be the 
sum of the degrees of belief for each proposition.2 Under this interpretation, 
the axioms of probability prescribe the rules that any epistemic agent engag-
ing in inductive reasoning must follow in calibrating his or her belief in any 
proposition. 

But who in the world is this “epistemic agent engaging in inductive rea-
soning”? That is, whose degree of belief does probability represent? Is it a 
particular individual conducting inferences, such as you or me? Does a group 
of people with common interests or issues such as a scientifc community or 
political institution also qualify as an epistemic agent? Or is an epistemic agent 
only an ideal agent that need not actually exist? For the time being, let us be 
lenient and admit all of these as epistemic agents. We also allow the degree 
of belief in the same proposition to difer from person to person. I may believe 
frmly in the existence of intelligent extraterrestrial life, whereas you might 
not. Groups of scientists such as NASA or SETI might have diferent takes. 
Each epistemic agent may assign probabilities diferently and thus have their 
own probability function P. For the meantime, let’s not question which prob-
ability function is correct. The probability axioms do not prohibit you from 
believing strongly in a wildly weird idea, like “the moon is made of blue 
cheese.” They only impose general and abstract rules on degrees of belief (such 
as that the degree of belief in an inconsistent proposition must be zero); they 
do not concern which specifc propositions are believed or disbelieved by any 
particular agent.3 

Nonetheless, we still need to consider how such degrees of belief are mea-
sured, and why they must conform to the aforementioned axioms. These are 
major topics in the philosophy of probability, which we will touch upon only 
briefy in this book; the interested reader is referred to the relevant literature 
(Gillies 2000; Childers 2013; Rowbottom 2015). The canonical way to measure 
degrees of belief appeals to the notion of fair odds. For any proposition A, 
consider a lottery such that you win $10 if A turns out to be true, and nothing 
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otherwise (i.e., if ¬A holds). The degree of belief that a given epistemic agent— 
let’s say it’s you—has in this proposition A can be determined by what you 
deem to be the fair price of this lottery. Here the “fair price” is the price at 
which you are willing to either buy or sell the lottery ticket. Thus, if you 
evaluate it as $6, you must be willing to buy it from me for $6 (in that case 
you will win $10 from me should A be true), and conversely, you have to sell 
it to me for the same price if I ask for it (in that case you will have to pay $10 
to me should A be true). Under this arrangement, what is the fair price of the 
ticket? Clearly, that should depend on how strongly you believe in A (and 
perhaps on many other things, such as whether you are into gambling, and how 
appealing you fnd the $10 prize, but let us ignore these matters here). If A 
stands for a logical truth such as “It will either rain or not rain in Kyoto on 
the next New Year’s Day,” you might feel safe to pay up to $10. In contrast, 
you may not want to pay that much if the proposition is “It will rain in Kyoto 
on the next New Year’s Day.” Again, if the proposition is “It will snow in 
Hawaii on the next New Year’s Day,” you would probably fnd the ticket almost 
worthless. These examples suggest that the value a person attaches to a bet on 
a given proposition refects that person’s degree of belief in that proposition. 
Proponents of the subjective interpretation of probability thus argue that the 
probability value of that belief can be determined by the ratio of the named 
price to the prize. If, for instance, you think the fair price of a lottery that will 
win you $10 if A holds is $3, the probability you assign to A will be 0.3. 

Once degrees of belief are defned in this way, it becomes clear why they 
must conform to the aforementioned axioms of probability. Let A again be “It 
will rain in Kyoto on the next New Year’s Day,” with its negation ¬A being 
“It will not rain in Kyoto on the next New Year’s Day.” Suppose you assign a 
probability of 0.6 to both of A, ¬A, in violation of the probability axiom. This 
means that you are willing to either buy or sell for $6 the lottery ticket that 
will win you $10 when A holds and the ticket that will win you $10 when 
¬A holds. I thus sell you both tickets for the total price of $12. But come what 
may, your net gain will only be $10, for only one of A or ¬A, but not both, 
can be true simultaneously. You are thus destined to lose $2. Conversely, now 
suppose you assign a probability of 0.4 to both of A, ¬A. I then buy both for 
the sum of $8. Since one of them will certainly be a winning ticket, I get $10 
and you lose $2 again. A series of bets that is sure to incur a loss as in this 
example is called a Dutch book. To avoid being Dutch-booked in the example, 
your probability assignments must satisfy P(A) + P(¬A) = 1. The preceding 
discussion illustrates that a violation of the second axiom of probability—where 
one assigns a probability other than 1 to a logical truth such as A ∨ ¬A—incurs 
a sure loss. 

It can be easily shown that a violation of the other two axioms also leads to 
similar Dutch books. Now, a person who can be “Dutch-booked” in this way— 
i.e., a person who readily agrees upon odds that imply a certain loss—is surely 
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not rational. Hence, if we want to be rational epistemic agents, we must assign 
our degrees of belief in accordance with the axioms of probability, and con-
versely, the degrees of belief of any rational agent will satisfy the probability 
axioms—or so argue the proponents of the subjective interpretation. 

The subjectivist idea of reducing probability values to a person’s beliefs and 
measuring them in terms of bets may strike some as being too arbitrary and 
unscientifc. This approach, however, does have its own advantages. One is its 
versatility: anything expressible in a proposition can be assigned a probability 
value. A case in point is a hypothesis about the parameters of a distribution. 
For instance, the hypothesis that a coin is fair can be expressed by a proposition 
about the parameter of a Bernoulli distribution θ = 0.5, and the degree of 
certainty of this proposition can be meaningfully represented by a probability 
value. This is in stark contrast to the frequentist framework, where, as we will 
see in the next chapter, probability values cannot be meaningfully assigned to 
statistical hypotheses. Moreover, we can update the degree of certainty of the 
hypothesis by calculating the probability of the hypothesis/proposition for each 
parameter on the basis of the results of coin-tossing experiments. This updating 
procedure is guided by the famous Bayes’ theorem. In the next section we will 
look into the basic ideas of Bayesian statistics, which is built upon Bayes’ theo-
rem, along with some examples. 

2.2 Bayesian Inference 

As stated previously, inductive inference according to Bayesian statistics is the 
process of updating the degree of certainty of a hypothesis on the basis of 
observed evidence. If we let h be a hypothesis and e be data or evidence, the 
degree of belief in the hypothesis after the evidence is obtained is represented 
by the conditional probability P(h|e). By Bayes’ theorem, introduced in the 
previous chapter, this becomes 

P e h P h( | ) ( )  
P h e( | ) = ,

P e( )  

where 

• P(e|h) is the likelihood, which represents how likely it is that we obtain evi-
dence e if the hypothesis h is true. 

• P(h) is the prior probability (or simply “prior”), which represents the degree of 
certainty of the hypothesis before the evidence is obtained. 

• P(h|e) is the posterior probability (or “posterior”), which represents the degree 
of certainty of the hypothesis after the evidence is obtained. 

When there are multiple hypotheses h
1
, h

2
, .  .  ., their posterior probabilities 

P(h
i
|e) can be calculated in a similar way. By applying the law of total 
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probability (see Section 1.2.1), the P(e) in the denominator can be replaced 
by the sum of the products of the likelihood and prior probability of each 
hypothesis: 

P e( ) ˜ P e h P h .˝ ° | i ˛ ° ˛i 
i 

Hence, Bayes’ theorem essentially allows us to calculate the posterior probabilities 
of hypotheses from their likelihood and prior probability; in other words, it 
gives us a rule for updating our belief in each hypothesis on the basis of its 
explanatory power (i.e., its ability to predict the evidence that is actually obtained) 
and our pre-observational belief in that hypothesis. 

Bayesian statistics makes full use of this theorem in making inductive infer-
ences such as hypothesis confrmation and prediction. Let’s look at some 
examples. 

2.2.1 Confrmation and Disconfrmation of Hypotheses 

Imagine that your nearby shopping mall holds a lottery every weekend, where 
you draw a ticket from a box. They have two kinds of boxes: one of them, say 
A, has winning tickets in a ratio of 1 out of 10, while the other, B, has win-
ning tickets in a ratio of 3 out of 10. Each weekend they choose one of these 
two boxes, without letting you know which. On some Sunday you visit the 
mall and draw a ticket, which, unfortunately, is blank. Given this evidence e, 
how should you update the probability of the hypothesis h

A
 that the box in 

front of you is A? 

• Since you had no information as to which box was in place before the draw, 
it would be reasonable to set the prior probabilities for the two boxes equal, 
so that P(h

A
) = P(h

B
) = 0.5. 

• Since the probability of getting a blank ticket from box A is 90%, we have 
P(e|h

A
) = 0.9; likewise, the probability of getting a blank ticket from box B 

is P(e|h
B
) = 0.7. 

Plugging these into Bayes’ theorem, the posterior probability of h
A
 is 

0 9. ˝ 0 5. 0 9.
P hA |e ° ˛ ˛ ˆ . .˜ 0 56 

0 9. ˝ 0 5. ˙ 0 7. ˝ 0 5. 1 6. 

On the other hand, the posterior of the hypothesis h
B
 that the box is actually B is 

P h |e ° 1 P h e ° ˙ . .˜ ˛ ˝ ˜ | 0 44B A 

From this we see that, given the evidence e that you got a blank ticket, the 
degree of certainty of the hypothesis that the box in front of you is A increases 
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from 50% to about 56%, while the hypothesis that the box is B decreases to 
about 44%. 

All this can also be expressed using random variables, which we introduced 
in Section 1.2.2. Recall that random variables are functions that express proper-
ties or possibilities in terms of their values. The property we are interested in 
here is the proportion of winning tickets in the box in front of you. If we use 
the random variable θ to denote the proportion of winning tickets, the hypoth-
eses h

A 
and h

B 
can be expressed as θ = 0.1 and θ = 0.3, respectively. That is, 

θ is a discrete variable with two values {0.1, 0.3}. The prior probabilities of 
these possibilities or values together defne a prior distribution of θ, which in the 
aforementioned case is the uniform distribution that assigns the same probability 
to both values (Section 1.2.3). Outcomes of the draw can also be expressed by 
a random variable E, where E = 0 represents drawing a blank ticket and E = 
1 represents drawing a winning ticket. With this notation, the posterior probabili-
ties of the hypotheses given the evidence of a losing ticket can be expressed as 
P(θ|E = 0), which defnes the posterior distribution of θ. Bayesian updating can 
thus be thought of as a process of calculating the posterior distribution from a 
prior distribution. 

Now, the random variable θ in the preceding discussion represents the 
parameter of a Bernoulli distribution, which we saw in Chapter 1. This obser-
vation allows us to see the Bayesian inference as a process of refning our belief 
in a probabilistic kind. This proceeds as follows. First, the stochastic process of 
drawing a ticket from a box is modeled using a probabilistic kind, in this case 
the Bernoulli distribution. Next, we make hypotheses (two in our example) 
about the parameters that determine the behavior of this probabilistic kind. 
Then we update the probabilities of these hypotheses—our degrees of belief in 
these hypotheses—on the basis of the observed data. Through this process, our 
belief about this specifc instance of the probabilistic kind—the lottery—gets 
refned. Thus, in the Bayesian formulation, an inductive inference is understood 
as the process of evaluating hypotheses about a presupposed probabilistic kind 
in relation to observed data, by updating its distribution from the prior to the 
posterior. 

2.2.2 Infnite Hypotheses 

In our example in Section 2.2.1, we considered just two hypotheses about the 
parameter of a probabilistic kind (the Bernoulli distribution), and calculated 
their posterior probabilities. This refects our assumption that there are just two 
possible boxes with a fxed winning ratio. 

As the next step, imagine a more general case where we have no idea at all 
about the proportion of winning tickets in the box. Our task is, after a certain 
number of draws, to estimate this proportion, and hence the probability of 
drawing a winning ticket. If the box contains a sufciently large number of 
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tickets, we may pretend that the true proportion could be any number between 
zero and one. This means that there are uncountably many hypotheses to con-
sider for the parameter of a Bernoulli distribution. The random variable θ that 
represents each hypothesis is thus a continuous variable, and our task is to 
calculate its posterior distribution. Now suppose we draw n tickets, x out of 
which are winning (we assume that tickets are replaced after each draw). Accord-
ing to the binomial distribution seen in the previous chapter, the probability of 
this event under hypothesis θ, i.e., the likelihood of this event, is 

x n˛xP x( |̃  ) ° C ˜ (1 ̨ ˜ ) .n x 

Since by assumption we have no prior information about what is inside the 
box, the prior distribution P(θ) should be uniform over all values of θ. Then, 
by Bayes’ theorem, the posterior distribution is 

n x
C ˜ x °1 ̇ ˜ ˛ ˙ 

n xP °˜ | x˛ ˝ .P ° ˛˜ . 
P x° ˛  

Noting that 
n 
C 

x
, P(x), and P(θ) do not depend on the hypothesis θ, the pos-

terior probability is proportional to θx(1 − θ )n−x, that is, 

x n˛xP(˜|x) ° ˜ (1 ̨ ˜ ) . 

Substituting a value from 0 to 1 into θ yields the posterior probability of any 
parameter hypothesis.4 Figure 2.1 shows plots of the posterior probabilities of 
all the hypotheses ranging 0 ≤ θ ≤ 1, calculated from various datasets (n, x). 
The plots illustrate that as the number of trials increases, a particular range of 

4
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3 

P
(˜

|x
) 

n=20, x=12 

n=5, x=3 

n=10, x=3 
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˜ 

FIGURE 2.1 The posterior distribution P(θ|x) of the parameter θ of a Bernoulli 
distribution given x out of n successes. The prior distribution is set to 
be uniform over [0, 1]. Two solid curves labeled n = 5 and n = 20 
denote experiments with the same success rates, but the inference in 
the latter is more refned thanks to the increased number of trials. 
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hypotheses comes to stand out, and the range itself shrinks, leading to a more 
precise inference. In fact, this posterior distribution itself represents a probabilistic 
kind, called the beta distribution. In general, the posterior distribution of the 
success probability θ given x successes out of n trials is represented by a beta 
distribution with two parameters, (x + 1, n − x + 1). 

To wrap up, a Bayesian inference begins by modeling a given problem 
with an appropriate probability distribution or probabilistic kind. This allows 
one to form hypotheses about the probability model, i.e., the uniformity of 
nature, in terms of the parameter(s) of this presupposed distribution, and to 
calculate their likelihood with respect to the observed data. From this likeli-
hood and prior probability of the parameter hypotheses, Bayes’ theorem 
derives posterior probabilities, thereby updating our beliefs about the probabil-
ity model. 

We have illustrated this process using a Bernoulli model of a lottery, but note 
that the same Bernoulli model may well be applied to many other random 
binary problems, such as a coin toss or predicting the sex of a newborn baby. 
In this sense the Bernoulli model points to a general “type” shared by various 
inductive problems, whence we have called it a probabilistic kind. Needless to 
say, the Bernoulli distribution is just one example of such kinds, and other 
inductive setups may be best captured by diferent kinds. An inference about 
the mean height or weight of a particular human population, for example, 
would be better served by the normal distribution; whereas if we want to esti-
mate the number of occurrence of a certain sporadic event, such as the number 
of phone calls that happen in a day, or the time interval from one call to the 
next, the Poisson or exponential distributions would be appropriate. In any case, 
stipulating a probabilistic kind determines the likelihood of a parameter hypoth-
esis, which, combined with a prior distribution, yields a posterior distribution 
over the hypotheses. Through such a process, Bayesian epistemic agents refne 
their beliefs about the hidden uniformity of nature. 

2.2.3 Predictions 

How, then, do such inferences about a probability model help us in predicting 
future or unobserved events? As we saw in Chapter 1, a prediction by inferential 
statistics is mediated by an inference about a probability model. Bayesian statistics 
implements this general strategy by deriving predictions from an updated pos-
terior distribution. Let us illustrate this using the lottery example from the 
previous section. The posterior probabilities of the Box A and Box B hypotheses 
after drawing one blank ticket were P(h

A
|e) = 9/16 and P(h

B
|e) = 7/16, respec-

tively. Assuming that we replace the ticket after each draw, we want to predict 
the outcome of a second draw. Letting e represent the event that in the second 
draw we get a blank ticket again, the desired probability is P(e|e), read as “the 
probability of drawing a blank ticket given the evidence e that the frst ticket 
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was blank.” To calculate this, we frst observe that there are two mutually exclu-
sive scenarios in which we draw a blank ticket: 

1. The box is actually A, from which a blank ticket is drawn. 
2. The box is actually B, from which a blank ticket is drawn. 

Let us begin with the frst scenario. Having drawn a blank ticket in the frst 
draw, we now believe that the box is A with the probability P(h

A
|e), which is 

the posterior of h
A
. The probability of drawing a second blank ticket from this 

box is the likelihood P ̃ e|h ° . Multiplying them gives the probability of the A 

frst scenario as P ˜e|hA °P h˜ A |e ° . Since the same goes for the second scenario, 
the desired probability is given by their sum: 

 | ˛ ˝ P  e h  P e e( )| ˜ P  e h P h |e | P h |e .° A ˛ ° A ° B ˛ ° B ˛ 
The probability of winning on the second try can be calculated in the same 
fashion. Together they give the distribution on the second draw informed by 
the outcome of the frst draw, which is called a posterior predictive distribution. 

While there are only two hypotheses h
A
, h

B
 in the above example, a case 

involving more hypotheses can be handled in the same way. When there are 
uncountably many hypotheses as in Section 2.2.2, the posterior predictive prob-
ability of e given data e is 

( )| ˛ ( ) ˛P e e ˜ ° P e( )| P ˛|e d . 

Here again, the posterior probability P(θ|e) is our updated degree of belief in 
a parameter hypothesis θ, while the likelihood P e( |θ )  represents the process of 
sampling new data e under this hypothesis. The prediction is given by summing 
up (integrating) the likelihoods of all parameter hypotheses weighted by their 
posteriors. Note that these two components of Bayesian prediction correspond 
neatly to the two arrows in Figure 1.2; the posterior probability captures the 
upward inference to the model from observed data, while the likelihood rep-
resents the downward sampling of unobserved data from the estimated model.5 

2.3 Philosophy of Bayesian Statistics 

2.3.1 Bayesian Statistics as Inductive Logic 

What was covered previously in this chapter is just the bare minimum of Bayes-
ian statistics, upon which a standard statistics textbook would go on to develop 
more practical applications and sophisticated techniques. But this is a philosophy 
book, and we are interested not so much in practical solutions as in epistemo-
logical signifcance. That is, we are interested more in what all these calculations 
mean, and how they serve our inferential practices. To approach these questions, 
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we need to take a step back and examine the philosophical basis of Bayesian 
statistics. 

According to Howson and Urbach (2006), who are leading proponents of 
modern Bayesianism, the Bayesian probability calculus provides a rule for induc-
tive inferences, or a sort of inductive logic. But what do they mean by this? To 
understand their claim, let us set aside the inductive part for a moment and 
briefy recall what “logic” is. When philosophers speak of logic, they usually 
mean deductive logic, which is a formal system of deriving conclusions from 
premises in accordance with certain logical rules. Such derivations must be valid, 
so that the truth of the premises guarantees the truth of the conclusions. The 
validity of an inference can be understood in terms of the satisfability of logical 
formulae. Consider a simple case of deductive inference in which a conclusion 
B is derived from premises A and A ⊃ B. We can verify the validity of this 
inference by checking whether the negation of the conclusion ¬B is consistent 
with the set of premises. This can be done using a truth function V that assigns 
the truth value 1 to true propositions and 0 to false ones. With this function, 
the truth of the premises can be expressed as V(A) = V(A ⊃ B) = 1, while the 
negation of the conclusion can be expressed as V(B) = 0. The question, then, 
is whether there exists a truth function V that simultaneously satisfes the fol-
lowing system of equations: 

V A( ) = 1 , (2.1) 

V A( ˜ B) ° 1 , (2.2) 

V B( )  .= 0 (2.3) 

Evidently, no such function exists: from the truth condition (or truth table) of 
conditional “⊃,” A ⊃ B is true exactly when A is false or B is true, so Equation 
(2.2) can be expanded as V(A) = 0 or V(B) = 1, which contradict Equations 
(2.1) and (2.3), respectively. Each truth function represents a possible situation 
by specifying the truth value of propositions. Hence, the unsatisfability of this 
system of equations means that there is no situation where the premises are true 
but the conclusion is false, which amounts to saying that the aforementioned 
inference is valid. 

Bayesian inference, according to Howson and Urbach, can be understood in 
the same way. Bayes’ theorem is a logical rule that derives posterior probabilities 
as a conclusion from the likelihood and prior probabilities as premises, in the 
same way that we derived the two deductive consequences of the formula 
(Equation 2.2) in our logical inference. The only diference is that instead of a 
binary truth function V, Bayesian inference uses a probability function P that 
can take any value between zero and one. This, however, does not amount to 
any diference in their nature as logical inferences. Indeed, the validity of the 
probabilistic calculus is warranted by the same kind of satisfability argument: 
If one deviates from Bayes’ theorem and miscalculates the conditional probability 
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P(h|e), the conclusion becomes inconsistent with the premises, in the sense that 
the likelihood, prior, and posterior probabilities they assign cannot be satisfed 
simultaneously by any probability function. Hence, if we want to carry out 
inferences consistently with the degrees of belief that we presuppose, we must 
follow Bayes’ theorem. 

Let’s sum up. Valid deductive inferences are those that assign a truth value 
to the conclusion consistently with the truth value assignments of the premises, 
and this is achieved by following sound inference rules. On the other hand, in 
order for an inductive inference to be valid, it must adjust the degree of belief 
of the conclusion, represented by the posterior probability, consistently with the 
degrees of belief of the premises (the prior and likelihood), and this is achieved 
by following Bayes’ theorem and the axioms of probability. It is in this sense 
that the Bayesian probability calculus provides us with a logic of inductive 
reasoning. 

2.3.2 Bayesian Statistics as Internalist Epistemology 

Let us grant Howson and Urbach’s picture of the Bayesian probability calculus 
as an inductive logic that assigns probability values to propositions in a consistent 
fashion, in the same way that one assigns coherent truth values in deductive 
logic. In this picture, Bayesian agents employ the probability axioms and theo-
rems to adjust their degrees of belief about a presupposed probabilistic kind in 
accordance with prior probabilities and observed data. But pursuing this analogy 
raises questions as to the alleged inductive nature of the inference. For one thing, 
all that deductive logic does is unpack what is already contained in the premises, 
without adding any new information. When we take “All men are mortal” and 
“Socrates is a man” as premises and conclude “Socrates is mortal,” we can by 
no means pretend to have gained any new knowledge. As we saw in the previ-
ous chapter, however, the essence of inductive reasoning lies in the fact that it 
tries to go beyond this limitation of deduction and derive some new information 
not contained in the premises. But if Bayesian statistics, just like deductive logic, 
is all about checking the consistency of probabilistic premises through transfor-
mations of formulas, how could it be of service to such ampliative inference? 
In other words, insofar as Bayesian statistics is part of a deductive mathematical 
theory, how could it be an inductive logic at all? 

This question brings us to the realm of philosophical epistemology. As we 
all know, logic and probability theory provide powerful tools for organizing and 
exploring what we believe and what we know. Under their guidance, we can 
discover unintuitive mathematical truths or fnd unexpected inconsistencies 
among seemingly benign statements. All of them, however, are a priori relation-
ships among given propositions. How can they have anything to do with 
acquiring or inferring a posteriori knowledge, as we aim to do when we try to 
(dis)confrm a hypothesis or predict the future? Philosophical epistemology has 
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been concerned with this very question, trying to understand how our experi-
ence and logic relate to knowledge, and in particular how the former can secure 
the latter. Insofar as Bayesian statistics is an art of producing scientifc knowledge 
through its “inductive” logic and observed data, it must have its own stance on 
this epistemological question. What, then, does this epistemology look like, and 
in what sense are the conclusions of Bayesian statistics entitled to the claim of 
knowledge? With a view towards answering these questions, the rest of this 
chapter aims to characterize Bayesianism as a kind of epistemological theory. 

Epistemology and the Problem of Justifcation 

The key to bridging statistics and epistemology is the concept of justifcation 
(Nagel 2014; Steup and Neta 2020). To see this connection and understand 
what justifcation is, let us leave statistics for a moment and step into the land 
of epistemology. Philosophical epistemology has long been concerned with the 
nature of episteme, or what we now call knowledge (Pritchard 2014). What is 
knowledge? The traditional standard answer ever since Plato is that knowledge 
is a justifed true belief. First, knowledge must be a belief: if some person is said 
to know that P, she or he must defnitely believe that P. Moreover, it must be 
true—that is, it must indeed be the case—that P; one cannot “know” something 
that is actually false. A merely true belief, however, does not automatically count 
as a piece of knowledge. This is because our beliefs may sometimes happen to 
be true by sheer coincidence. Suppose that one day you had a hunch that you 
were going to win a lottery out of the blue, and the ticket you bought was 
actually a jackpot ticket. You can hardly claim in this case, however, that you 
knew that the ticket you were going to buy was a jackpot, since by assumption 
you had no reason to think so. Alternatively, imagine that a devout political 
partisan, who had a deep-rooted desire for the downfall of the opposing party, 
was led by this desire to believe that its leader is involved in corruption. Imagine 
further that this leader later faced prosecution and pleaded guilty. But even after 
this incident, one can’t say that the devout partisan indeed knew about the 
corruption. For in this case, although she may have had a strong motivation for 
so believing, such wishful thinking does not count as a valid reason for the 
belief. Or in other words, her (true, as it turned out) belief lacked the proper 
justifcation. For these reasons it has been agreed among philosophers that 
knowledge is more than just a true belief—it must further be justifed by some 
legitimate reason or evidence. 

The purpose of justifcation is to rule out “lucky guesses” and distinguish 
genuine knowledge from those beliefs that are true merely by accident (Pritchard 
2014). By replacing “beliefs” with “hypotheses,” one easily sees that such con-
cerns arise not only in mundane inferences like those mentioned earlier, but 
also in all sorts of scientifc investigations. The question of what counts as 
scientifc knowledge is an intricate problem that cannot be given a simple 



 

 

 
 
 

 
 

 

 

Bayesian Statistics 55 

answer (at least, not here), but one thing that can be said for sure is that sci-
entifc knowledge is not just a hypothesis that turned out to be true. This 
becomes evident when one takes mathematical knowledge as a frst approxima-
tion. Suppose I believe that any even number greater than 2 can be expressed 
as the sum of two primes. Suppose further that one day this proposition—known 
as Goldbach’s conjecture—is proven correct by a talented mathematician. Even 
then, no one would acknowledge that I knew the answer to this age-old math-
ematical conundrum at the time of 2020. For one thing, although my belief 
may well have been correct, it lacked the requisite mathematical justifcation, 
namely a proof. 

The empirical sciences may difer from pure mathematics in many respects, 
but they are alike in that they both require not only truth but also justifcation 
for a hypothesis to count as knowledge. If truth were the only criterion, science 
would become prophecy: for example, one could argue that Democritus knew 
the atomic theory in that he claimed that all matter is composed of atoms, or 
that Leibniz knew the theory of relativity in that he denied Newton’s absolute 
space and time. Just as mathematical knowledge requires proof, what makes 
scientifc knowledge knowledge is the fact that it is justifed by certain procedures 
and inferences. For this reason, scientists are meticulous about the methods they 
use in their experiments and observations, as well as the logic that connects the 
obtained data with their conclusions, and they make them explicit in the “mate-
rials and methods” section of their paper. Among this array of justifcatory 
methods, statistics plays the central or even paramount role in the contemporary 
sciences. Most if not all scientifc hypotheses are stochastic, which means that 
no amount of observation or rigorous experiment can rule out the possibility 
that any outcomes favorable to the hypothesis under consideration were obtained 
just by sheer chance. Scientists, therefore, bear the burden of showing that their 
experimental results or observations are not a mere fuke, but genuine evidence 
that can indeed support or justify their hypothesis. Statistics takes on this justi-
fcatory task in contemporary scientifc reasoning. 

This perspective suggests that we view the Bayesian calculation of posterior 
probabilities from observed data as a process of justifying hypotheses. But if so, 
in what sense is it a justifcation process? There are a variety of diferent con-
ceptions of justifcation, and contemporary epistemologists have discussed their 
relative merits and demerits (Fumerton 2002; Pappas 2017). What does it mean 
to justify a belief or hypothesis, and how is it achieved? From one standpoint, 
justifed beliefs are those that are derived via valid inferences from other beliefs 
that have already been justifed. Another position emphasizes the role of a certain 
objective process in justifying beliefs, rather than the internal relationships among 
beliefs. Roughly speaking, the former is called internalist epistemology, the latter 
externalist epistemology. In what follows I argue that, in view of these contrast-
ing philosophical theses, Bayesian statistics is more akin to internalist epistemol-
ogy. Of course, this does not mean that all internalist epistemologists are 
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clandestine Bayesians, or that Bayesian statisticians are tacit internalists. Rather, 
my main goal is to show that Bayesianism and internalism adopt similar concepts 
of justifcation and also face similar difculties, and that through such a com-
parison we can shed light on the epistemological character of Bayesian statistics. 
With this objective in mind, let us frst look at the philosophical thesis of 
internalist epistemology. 

Internalism 

What condition does a belief need to satisfy in order for it to be counted as 
knowledge? According to internalist epistemology, an important condition is that 
the subject who entertains the given belief also possesses a reason or evidence 
for that belief. Consider again the devout party supporter. Recall that we judged 
that she did not know the corruption of the opposing party’s leader because 
her conviction came entirely from wishful thinking rather than from a legitimate 
reason or evidence. But suppose instead that she actually had a decent reason. 
For example, she may have been a skilled journalist and received a reliable leak 
to the efect that the FBI was probing the case. Under this new circumstance, 
we may judge that she had indeed known the corruption before it became 
public. For in this case, she had possessed a legitimate ground for believing that 
the party leader is corrupt, namely, the information she got about the FBI’s 
investigation. Here, the ground supporting the given belief needs to be not only 
veridical, so that the FBI is actually conducting the investigation, but also 
entertained by the subject in question, so that the reason is “internalized” as 
her belief—otherwise we cannot say that it was actually her, rather than someone 
else, who knew that matter. In this way, internalists understand justifcation as 
a certain kind of relationship that holds among beliefs possessed by a subject. 
A belief, according to this view, is justifed only if it is related to other beliefs 
of the epistemic agent that serve as reasons for the target belief. 

Such a justifcatory relationship can be understood as an inferential one. The 
leak from the FBI supports the belief in corruption only if the latter can be 
safely derived from the former. In general, a belief is warranted when it follows 
from other beliefs of the epistemic agent via an inference based on valid infer-
ential rules. Paradigmatic examples of such inferential rules are those of deductive 
logic. If I believe that Socrates is a man and that all men are mortal, then an 
application of syllogism justifes my also believing that Socrates is mortal. 

Not all inferences, however, possess this kind of logical necessity. In the 
example, the tip about the FBI’s move may well provide partial evidence for 
the party leader’s crime, but it will not entail it with absolute certainty. In this 
regard, Bayes’ theorem seems to furnish this kind of nondeductive reasoning 
with a solid inferential rule. Recall that for Bayesians, a probability measures a 
degree of belief, and that statistical inferences concern relationships among 
beliefs. Bayesian agents apply Bayes’ theorem to premises consisting of the 
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evidence, prior probabilities, and likelihood in order to derive their new degree 
of belief in a hypothesis. We have seen earlier that this procedure takes the form 
of a valid inference based on logical rules. Of course, we should not forget that 
what is concluded through this kind of Bayesian inference is not the truth or 
falsity of a hypothesis, but rather its certainty as measured by the posterior 
probability. Hence, what is justifed by a posterior probability of, say, 0.99 is 
not the belief that the hypothesis is true, but rather that it is almost certain. 
Indeed, there is a very signifcant gap between these seemingly similar beliefs.6 

But apart from this diference, one may well say that Bayesian statistics embod-
ies, like deductive logic, inferential processes that warrant one’s belief in a 
hypothesis on the basis of one’s beliefs in the premises. 

We can thus give an answer, from the Bayesian perspective, to the question 
we posed earlier: how and in what sense does statistical analysis justify scientifc 
hypotheses? According to internalist epistemology, to justify a belief is to sup-
port it by other beliefs—which play the role of premises—via valid inferential 
rules. Bayesian statistics gives substance to this internalist conception of the 
justifcatory process by providing an inferential rule that derives the posterior 
degree of belief in a given hypothesis from the prior (degree of ) belief in that 
hypothesis, observed evidence, and likelihood. By applying this rule, Bayesians 
can justify the degree of certainty they attach to a particular hypothesis in light 
of data and prior knowledge. Bayesian justifcation, therefore, essentially consists 
in the inferential relationships among the beliefs possessed by an epistemic 
subject, and in this sense it can be characterized as internalist. 

2.3.3 Problems with Internalist Epistemology 

For the sake of argument, let us agree with internalists that justifcation consists 
in deriving (the degree of ) one belief from (the degrees of ) other beliefs in a 
consistent way. This, however, is just a defnition. We need to take a step further 
and ask whether the justifcation concept thus defned satisfactorily fulflls the 
roles it is expected to serve. The primary role of justifcation, as noted previ-
ously, is to prevent “lucky guesses.” As epistemic agents, we seek truths, but 
whether or not a given inductive hypothesis is true is something that lies outside 
of our purview and is ultimately for the world to decide; one could even argue 
that we have no way of checking or observing the veracity of our hypotheses. 
But this doesn’t mean that all is lost. There may be sufcient reason to consider 
certain beliefs that are obtained through a particular method to be true, even 
if only God knows whether they are ultimately so. To prevent “lucky guesses” 
is to grant this kind of reason to certain beliefs or hypotheses. We therefore 
expect justifcation to warrant, at least to some extent, the truth of the justifed 
belief. This does not mean, of course, that justifcation must endow beliefs with 
absolute certainty. Although in the past there were philosophers who, like Des-
cartes, sought an infallible criterion of truth, their contemporary descendants 
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are much more modest and accept that the conclusions of ideal and seemingly 
fawless reasoning may nevertheless turn out to be false. Still, the concept of 
justifcation is expected to be truth-conducive, meaning that it must serve as a 
guide toward the truth, perhaps not infallible but nonetheless reliable to a certain 
degree (Goldman 2009; Pritchard 2014). The question, then, is this: is the 
internalist conception of justifcation we summarized in this section truth-
conducive, and if so, in what sense? 

The reason this raises a difculty for internalists is that it is not clear at all 
how the justifcation of a belief in terms of its logical or inferential relationships 
with the agent’s other beliefs should contribute to its truth, which is usually 
understood as a correspondence with the world “external” to the agent. If, for 
example, I believe that the moon is made of blue cheese and that blue cheese 
is tasty, I can logically deduce that the moon is tasty; but it is certainly absurd 
to actually believe in this conclusion. Obviously, the problem here is in the 
falsity of the premise that the moon is made of blue cheese. Logical deduction 
warrants the truth of the conclusion only if its premises are also true. What, 
then, warrants the truth of the premises? If we are to remain within the inter-
nalist framework, the necessary warrant cannot come from anything other than 
further justifcation, namely, from valid derivations of the premises in question 
from other beliefs. One can then easily imagine those beliefs in turn requiring 
yet other beliefs for their own justifcation, leading to an infnite regress. We 
fnite beings, however, cannot complete such an infnite chain of justifcation. 
Historically, this regress problem has presented itself as the frst obstacle for inter-
nalists in establishing the truth-conduciveness of their concept of justifcation 
(Hasan and Fumerton 2018). 

The same kind of problem may also arise for Bayesianism qua internalist 
epistemology. As a piece of mathematical theory, Bayes’ theorem allows us to 
adjust our degree of belief in a hypothesis given certain evidence in accordance 
with the likelihood and the prior probability. A coherent assignment of probabili-
ties to beliefs, however, falls far short of vindicating the correctness of the posterior 
probability, unless we also have sufcient reason to believe in the legitimacy of 
the premises. Hence, just as in the case of internalist epistemology, the justifca-
tion of these premises proves essential for the truth-conduciveness of Bayesian 
inferences, so that their posterior probabilities correctly refect the way the world 
actually is. And, as we will see shortly, we encounter a regress situation here 
similar to the one that has troubled philosophical epistemology. With this in 
mind, in what follows we will examine in turn how the two major premises of 
Bayesian inference, prior probability and likelihood, are justifed. 

Justifcation of Priors, Round 1: Washing Out 

In addition to observed data, Bayesian inferences require two sorts of assump-
tions, the likelihood and prior. The assumption of likelihood—or in our 
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terminology, the assumption of a statistical model or “probabilistic kind”—is a 
common one made in any parametric method, including classical statistics and 
model selection. The use of prior probabilities, in contrast, is unique to Bayesian 
statistics and has traditionally been the epicenter of the heated discussion of the 
pros and cons of Bayesian statistics. Before embarking on this issue, let’s consider 
the following example, which illustrates the importance of priors in Bayesian 
inference. 

Alice goes to a hospital for a medical diagnosis, and to her dismay she 
tests positive for a certain disease. The doctor explains that the test kit 
used for the diagnosis is accurate and can detect 95 out of 100 cases, 
while it gives a false positive (i.e., diagnoses a healthy person as positive) 
in only 1 out of 10 cases. Now, what is the probability that Alice is actu-
ally ill? 

To compute the answer we need a prior probability. From what she 
has heard so far, Alice estimates the incidence rate of this disease to be 
about 1%, so that one out of a hundred people has this disease. Letting 
h denote the proposition that she is actually ill and e the proposition that 
she tested positive, we have P(h) = 0.01, P(e|h) = 0.95, P(e|¬h) = 0.1. 
Then the posterior probability is 

. ° .0 95 0 01 
P h e| ˜ ˝ .( )  0 088. 

. ° . ˛ . ° .0 95 0 01 0 1  0 99 

Alice is totally shocked by the thought that there is about a one in ten 
chance that she has the disease. 

But is Alice’s conclusion really reasonable? Suppose that in reality Alice 
had greatly overestimated the prevalence of the disease, the true rate being 
just one out of a thousand. With this correct prior probability P(h) = 
0.001, the posterior becomes only 0.009. Thus Alice’s probability of being 
ill is less than 1% even if she tested positive. 

Concluding a high posterior probability just by looking at a high likelihood 
as Alice does here is called the base rate fallacy. This fallacy vividly illustrates the 
need for an appropriate prior distribution in justifying the conclusion of a 
Bayesian inference. Moreover, it casts a shadow of doubt on the objectivity of 
Bayesian inferences. Let us suppose in Alice’s case that the true incidence rate 
is completely unknown. Then, if two doctors had diferent takes on the prior 
distribution, they may end up with diferent, possibly opposite, diagnoses in the 
face of the same positive test result. This seemingly implies that Bayesian infer-
ences crucially depend on agents’ subjective opinions and do not reach objective 
conclusions. 

The Bayesian’s standard answer to this criticism is as follows (Edwards, Lind-
man, and Savage 1963; Earman 1992). True, we do not reach an objectively 
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FIGURE 2.2 The “washing out” of priors with data. The solid line a
0 
and dashed line 

b
0 
represent, respectively, two diferent prior distributions on the param-

eter of a Bernoulli distribution. The a 
n
, b

n 
respectively show how these 

distributions change as we carry out more trials, half of which are suc-
cesses, for n = 100, 1000, 3000. One can see that the two chunks of 
posterior probabilities approach each other as the data increase, and 
mostly overlap after the 3000th trial. 

justifed conclusion in just one shot. Bayesian inference, however, is a process 
of updating beliefs, and it is by repeating this process that we can arrive at the 
right conclusion. In our lottery example in Section 2.1.1, we updated the 
posterior probability of the hypothesis h

A
—that the box is A—to 56%, given 

the evidence of having drawn one blank ticket. We can then draw a second 
ticket, this time using the posterior we obtained as the new prior. Repeat this 
process, setting the prior distribution of the nth draw to the n−1-th posterior, 
and after a sufciently large number n of trials, the Bayesian inference will 
eventually lead us to the same single posterior distribution, regardless of what 
priors we began with. Figure 2.2 illustrates this “washing out” of priors using 
the Bernoulli distribution as an example. The fgure shows that the opinions 
(posterior distributions) of two scientists, a and b, who start with very diferent 
prior distributions (the outermost solid line a

0 
and dashed line b

0
) approach 

each other as the number of observations is increased, until fnally they agree 
to a large extent. In general, as we obtain more and more data, the efect of 
priors gets washed out and the posterior distribution converges to the true 
parameter value (0.5 in this example). Hence, subjective disagreement prior to 
an inquiry does not pose a serious problem if we have enough data, or so 
Bayesians argue. 

This process of accumulating data can be understood as a sort of justifca-
tory “regress,” similar to the one we saw in internalist epistemology. The 
premise or prior of the nth inference is justifed by the conclusion or pos-
terior of the n−1-th inference, whose premise in turn is justifed by the 
preceding Bayesian updating, and by continuing this chain of justifcation, 
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a Bayesian agent aims to justify the whole process of inference. But how 
long is this chain? Many epistemologists think that it continues indefnitely, 
and that such an infnite regress cannot justify anything.7 In contrast, statisti-
cians think that an infnite regress can ultimately justify the conclusion. The 
basis of this claim is the law of large numbers that we saw in the previous 
chapter. The law guarantees that unless we assign zero probability to the 
true hypothesis, our posterior will converge to the true distribution as the 
number of trials approaches infnity, regardless of what priors we begin with. 
Some may prefer to view this process of accumulating data as “progress” 
rather than “regress,” but this is just a diference in perspective: the idea that 
one can reach the truth through an infnite procession of inferences means, 
when viewed backwards, that the conclusion thus attained is justifed by the 
infnite stock of inferences. At any rate, what is important is that there is a 
theoretical proof to the efect that the posterior distribution will eventually 
converge to the truth should one repeat the process of justifcation indef-
nitely (Earman 1992, ch. 6). This means that Bayesian justifcation is asymp-
totically truth-conducive after all.8 

Justifcation of Priors, Round 2: Non-Informative Priors 

But all this is valid only if we can aford an infnite or sufciently large number 
of trials. In practice, we never have an infnite amount of data; usually we don’t 
even have anything close to that, and in such cases there is a high chance that 
the prior distribution we took as the premise is not completely washed out but 
remains to afect the accuracy of the conclusion. In such realistic situations 
where one can aford only a fnite chain of justifcation, one must choose an 
appropriate prior distribution as the starting point. The chosen prior is then 
expected to serve as a base premise, or foundation, for sustaining the subsequent 
updating process. In philosophy, such a strategy is known as epistemological foun-
dationalism (Hasan and Fumerton 2018). Foundationalism assumes that among 
our beliefs there are “basic” ones that do not require any further justifcation, 
but rather serve as the ultimate resource for the justifcation of all other beliefs. 
The obvious question, then, is: what are these basic beliefs? If a belief is basic 
in the aforementioned sense, it must draw its justifcation solely from itself, 
without help from any other beliefs. But how is that possible? Two possibilities 
are conceivable. One is to grant that there exists a form of knowledge that is 
certain a priori, independently of any experience. Some might count beliefs in 
mathematical propositions such as “1 + 1 = 2” as candidates for such knowledge, 
for they do seem certain by themselves, without the need for any empirical 
justifcation. Alternatively, some philosophers like Descartes thought that our 
beliefs (or “ideas” in his terminology) about the existence of the self and God 
have an a priori certainty even greater than that of mathematical beliefs, and 
tried to ground our entire system of knowledge on that frm basis. The second 
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possibility is to adopt an a posteriori strategy, and to accept our beliefs in basic 
sense perceptions like “I now see such-and-such a color” as primitive and certain 
by themselves. 

Likewise, the Bayesian justifcation of priors may take two directions. The 
principle of indiference is the most standard a priori strategy for justifying prior 
distributions without resorting to experience (e.g., Gillies 2000; Williamson 
2010) This principle says that, in the absence of any prior information about 
the hypotheses under consideration, we should regard them as equally likely 
and assign to them the same probability.9 The prior distribution thus obtained 
is called a non-informative prior. The distribution that assigns the probability 0.5 
to both boxes A and B in the scenario we considered previously is an example 
of a non-informative prior. When we have no specifc information about what 
is inside the box, the non-informative prior for the hypotheses about the 
parameter (i.e., the probability of winning) is the uniform distribution over 
0 ≤ θ ≤ 1. When we want to use a normal distribution instead of a uniform 
distribution as the prior, we can make it a uniform-like fat distribution by 
setting a very large variance. Although this may not be non-informative in a 
strict sense, it provides a good enough approximation in practice. 

But how can such a priori premises warrant the correctness of a conclusion 
about an empirical hypothesis? This question also arises for any foundationalist 
with an a priori slant. To answer this question, we frst need to be clear as to 
what is intended by the principle of indiference. The gist of the principle, as 
a guide for setting a prior distribution in the absence of background knowledge, 
is above all to rule out the biases of individual agents and settle on the same 
and supposedly most neutral starting point. This intersubjective agreement 
ensures that any Bayesian updating process using the same dataset will bring us 
all to the same conclusion or degree of belief. The intersubjectivity thus achieved, 
however, does not by itself imply that we have reached an objective accordance 
with the external world—we may have all come to a wrong conclusion together! 
This means that the principle of indiference does not sufce to establish the 
truth-conduciveness of Bayesian inferences, unless it is combined with another 
assumption. The other assumption we need is that the other premise, the likeli-
hood, is correct. Indeed, the guiding idea behind the non-informative prior is 
to let the conclusions of Bayesian inference depend entirely on empirical evidence 
rather than subjective and arbitrary opinions. How the data afect posteriors, 
however, depends on the likelihood function, and which likelihood function 
we should use—that is, which probabilistic kind aptly captures the inductive 
problem at hand—is an empirical question par excellence. Hence, although the 
principle of indiference may be a nice start, it cannot be the whole story; to 
establish the truth-conduciveness of Bayesian justifcation, it must be coupled 
with a further empirical assumption. 

Moreover, there has been skepticism as to whether the principle of indifer-
ence actually fulflls even this restricted goal of establishing intersubjective 
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agreement in an a priori fashion. Even if one grants that the non-informative 
prior is the most neutral and unbiased, one may still ask why we need neutrality 
to begin with (Williamson 2010, ch. 3). If intersubjectivity is all that matters, 
why can’t we adopt other methods for fxing the prior, say by fat or voting? 
Another technical concern is that non-informative priors are not invariant under 
variable transformations, so that they cease to be non-informative when the 
object is described in terms of diferent variables. This problem has been known 
under the names of the “wine/water paradox” or “Bertrand paradox” and points 
to the interesting fact that even with the assumption of no information, the 
priors of Bayesian inferences cannot rule out arbitrariness in variable choice. 
Readers interested in these issues are referred to Gillies (2000), Williamson 
(2010), Childers (2013), and Rowbottom (2015), which have detailed treatments 
of this topic. 

Justifcation of Priors, Round 3: Empirical Bayes 

The principle of indiference provides an a priori justifcation of prior probabilities 
in the absence of any supporting experience. If, on the other hand, something 
is known about the hypothesis under question, one may well consider integrat-
ing this information into the prior distribution. In the previous example of 
medical diagnosis, we used the background knowledge that the incidence rate 
is 0.1% as our prior. Calibrating priors with the data at hand instead of using 
non-informative priors gave a far better inference in this particular case. This 
method of adjusting the prior distributions a posteriori in accordance with back-
ground knowledge or known data is a feature of what is called empirical Bayes 
(Efron and Hastie 2016, ch. 6). 

Empirical Bayes is motivated by a natural and reasonable postulate, namely, 
that we ought to adjust our degree of belief in a hypothesis in such a way that 
it matches the actual chance of the target phenomenon’s occurrence. Philosopher 
David Lewis dubbed this requirement the Principal Principle and took it up as 
the essential (or “principal”) assumption in our application of subjective prob-
abilities to inferences about the objective world (Lewis 1980).10 When we 
introduced the concept of subjective probability in Section 2.1, we were indif-
ferent about how we set our degrees of belief as long as they satisfy the axioms 
of probability, so that it would even be OK to assign a high probability to the 
blatantly absurd blue cheese moon hypothesis. Given that a strict adherence to 
the probability axioms will prevent one from being Dutch-booked and will help 
avoid bets that incur a sure loss, it does ensure rationality to some extent. But 
this is indeed a very small extent, and some may fnd it far insufcient as a rule 
for rationality. Indeed, you might be hesitant to call someone very rational if 
that person attaches a high probability to the belief that “It will snow in Hawaii 
next New Year’s Day,” even if his or her probability assignment complies with 
the probability axioms. This is because such a person will very likely, if not 
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surely, lose money if a bet is made based on this hypothesis. If rationality requires 
us to avoid not only sure losses but also likely risks, we need to adopt an addi-
tional constraint to the efect that our degrees of belief match the actual chances 
of the target phenomena—this is precisely what the principal principle says. 

The requirement of the principal principle should sound natural, maybe too 
natural, so much so that some may wonder whether it deserves such a pompous 
name: who on the earth wants their degree of belief to be discordant with the 
actual chance? Justifying this seemingly obvious requirement, however, is not as 
easy as it frst appears. For one, we do not yet have a clear defnition of the 
“actual chance of the occurrence of an event.” What is it if not a degree of 
belief, and what does it mean to match these two notions—the subjective prob-
ability and the allegedly objective chance? The frst thing to note is that probabili-
ties in the Bayesian semantics refer to degrees of belief, so that the “chance” in 
question here should be distinguished from the probability we have been talking 
about. What is it, then? The most obvious candidate would be the actual fre-
quency of the target phenomenon, but defning the “chance” in terms of fre-
quencies is not so easy as it may appear. Let us explain the difculty with the 
previous example in which we calibrated the prior probability of a disease using 
its past incidence record. Suppose that the record contained data of 1000 patients, 
out of which 10 had the disease. Should we then use all of this data and fx our 
prior to 1%? That sounds reasonable, unless we independently knew that men 
and women have diferent incident rates, in which case we should ignore or at 
least discount the data from male patients in diagnosing Alice’s condition. The 
problem is that the same worry may arise in principle with any categorization, 
such as age, place of residence, medical history, or zodiac signs. It is not a priori 
clear which among these categories should be considered, and if we decide to 
stratify the data with all the categories, we may end up throwing away as irrel-
evant all cases other than Alice herself. The moral of this story is that the “chance 
of occurrence” can be defned only with respect to a certain reference class, and 
that it is not necessarily obvious which class is appropriate for a given problem 
(Hájek 2007; Bradley 2015). 

Furthermore, even if we are somehow able to defne the actual “chance of 
occurrence” based on frequencies with respect to a certain reference class or on 
other grounds, the problem of how it relates to probabilities in Bayesian statistics 
still remains. The fact that the “chance of occurrence” refers to an objective 
property of an event—such as its actual frequency—means that it difers in 
nature from probability in the Bayesian context, which, we recall, was defned 
as an agent’s subjective degree of belief. What the principal principle purports 
to do, then, is to justify degrees of belief in terms of something outside of 
beliefs.11 But how is such a justifcation possible, if Bayesian justifcation is by 
nature an internal relationship among subjective beliefs, as previously discussed? 
At any rate, a coherent assignment of probability values does not seem to help 
us here. The proponents of the principal principle, then, need to invoke a 
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concept of justifcation diferent from that used within the standard Bayesian 
framework, or just accept it as an unjustifable dogma. This indicates a concep-
tual, if not practical, difculty underlying empirical Bayes. Calibrating our 
subjective probabilities and other premises with the data at hand does seem very 
natural, and arguably it enables us to make better inferences if we can expect 
to have good background knowledge, as in Alice’s case. A theoretical justifca-
tion of such a practice, however, cannot be found in the internalist framework 
of Bayesian statistics and must come from outside. 

In fact, this is a general problem faced by any internalist epistemology with 
a foundationalist slant. Foundationalists believe that there are basic beliefs that 
stop the justifcatory regress without itself needing a further justifcation. But 
are there really such beliefs that justify themselves, like the unmoved mover? 
If they exist, the most obvious candidates would be sense perceptions like 
colors or fgures appearing in one’s feld of vision. Indeed, the visual image 
I am having now may well appear to justify my belief that I am looking at a 
computer screen now. But since justifcation, by nature, is an inferential rela-
tionship among propositions, in order to carry out its justifcatory job the 
sense data must have a certain propositional content, like “I’m looking at a 
black spot now.” Once rendered in this way, however, the truth of the propo-
sition comes into question, and I bear the burden of dispelling the doubt as 
to whether I am really looking at a black spot rather than hallucinating. But 
that would require new evidence (e.g., that my vision is well-functioning), 
and hence, the belief in question can no longer be said to be basic. The 
foundationalists’ attempt to stop the regress with basic sensory experience thus 
fails. The philosopher Wilfrid Sellars called such immediate experience the 
given and dismissed it as a myth (Sellars 1997). That is, there is no such thing, 
either in the form of beliefs or other perceptual experiences, that can con-
veniently do the double duty of securing its own empirical correctness and 
serving to justify other beliefs too. 

Exactly the same conceptual problem arises for empirical Bayes. The past 
data or frequencies used to adjust a prior distribution in the empirical Bayes 
approach play the same role as the sense data used to justify basic beliefs in 
foundational internalism. In order for the data (which is literally the Latin word 
for “given”) to serve as a basis for subjective Bayesian reasoning, however, they 
must themselves take the form of beliefs; that is, it must be the belief that certain 
data are observed that does the real justifcatory work. If so, we need to consider 
the probability of this belief—we have to assign a certain degree to the belief 
that such and such data are obtained. However, such an assignment would in 
turn require justifcation from other beliefs, especially those about the likelihood 
and further prior, and thus we are faced with a regress again. Admittedly, such 
an infnite regress is merely an in-principle possibility which hardly, if ever, 
arises in actual practices—but that is only because the regress is cut of, usually 
implicitly, by a fat like the principal principle. 
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Just as a justifcatory link that is supposed to connect the given data with a 
basic belief cannot be found in the logic of internalist epistemology (assuming 
the Sellarsian criticism holds), this principle at the basis of the empirical Bayes 
approach does not have a justifcation within Bayesian statistics. Setting up 
observed frequencies as a basic prior exempt from any further probabilistic 
justifcation is more like a declaration or agreement than an empirically verifed 
practice or a mathematically derived protocol. Moreover, if one goes on to use 
the same data to calculate posterior probabilities, one ends up using the same 
data twice in a single inferential procedure. This is called double dipping and 
violates the so-called likelihood principle, one of the central tenets of Bayesian 
statistics (Section 3.3.3). Hence, although the principal principle and empirical 
Bayes appear to provide an intuitive and efective way of ensuring the truth-
conduciveness of the Bayesian brief updating process, it is hard to come up with 
a theoretical justifcation of these approaches, at least within the internalist 
Bayesian framework of “relationships among beliefs.” 

Justifcation of the Likelihood 

The discussions in this section thus far have focused on the justifcation of prior 
distributions. Now let us turn to the other principal assumption of Bayesian 
inferences, the likelihood. The likelihood, or the probability of data under a 
given hypothesis, is determined by the probabilistic kind that models the sto-
chastic process under consideration. As we saw in Section 1.2.3, identifying a 
probabilistic kind or distributional family allows us to express the probability of 
data as a function of parameters of the distribution. The likelihood term in 
Bayes’ theorem expresses this functional relationship in the form of the condi-
tional probability P(e|θ ), in which the parameters θ determine the distribution 
of data e. Clearly the form of this functional relationship should depend on the 
nature of the inductive problem at hand. The justifcation of likelihoods, there-
fore, boils down to the task of choosing the appropriate probabilistic kind that 
efectively captures the underlying uniformity of nature. 

But what does it mean for a model to be appropriate? This is in fact an 
intricate question to which we will return later in Chapter 4, where we discuss 
model selection. But here we can take a simple realist stance: a statistical model, 
or a probabilistic kind in our terminology, is appropriate when it faithfully 
represents the target phenomenon; in other words, it “carves nature at its joints” 
as any decent natural kind is expected to do. In the probability-theoretic con-
text, this means that the assumed distributional family includes the true distri-
bution, or one which is fairly close to it, so that a proper tuning of its 
parameter(s) will make it a fairly faithful picture of the data-generating process. 
Since inferential statistics carries out inductive reasoning through this underly-
ing uniformity (Figure 1.2), and since in parametric statistics the uniformity 
reveals itself to us only in the form of parameters (or posterior distributions 
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thereof ) of the assumed distributional family, this realist requirement should 
strike us as a reasonable one. 

The next natural question is: how do we know whether the probabilistic 
kind or likelihood function used in a specifc study is appropriate in the afore-
mentioned sense? In the case of priors, we had two routes for justifcation—an 
a priori one and an a posteriori one. Unfortunately, there is no a priori route for 
the likelihood, for no armchair thinking can ensure that our model correctly 
captures the uniformity of nature. A probabilistic kind is an empirical hypothesis 
about the data-generating process, which can be evaluated only by actually 
looking at the process through data. This evaluation procedure is called model 
checking and comes in two varieties (Gelman et al. 2004, ch. 6). The frst type 
of check precedes the application of Bayes’ theorem and sees whether the 
observed data actually follow the assumed distributional family using some 
statistical tests, like a normality test. The other type is done after the Bayesian 
inference and examines the match between the posterior predictive distribution 
(Section 2.2.3) obtained from the inference and the sample distribution (i.e., 
the actual distribution of data). If these checking methods detect a large dis-
crepancy between the data on the one hand and the assumed distributional 
family or posterior predictions on the other, we may reject the model’s assump-
tions as false. 

It is noteworthy that these checks are not part of the standard Bayesian prob-
ability calculus of posteriors from priors, but rather additional procedures to be 
conducted before or after the analysis. In most cases, checks are carried out by 
statistical tests (discussed in Chapter 3) or visual inspections of distributional 
forms or sample statistics. These are epistemic processes distinct from Bayesian 
inference, understood as a probabilistic derivation of degrees of belief, and as 
such they do not produce conclusions in the form of probabilities—for example, 
they do not say anything like “the posterior probability that the assumed model 
is correct is such and such.” Rather, they are a kind of hypothetico-deductive 
inference that makes a judgment about the hypothesized statistical model by 
comparing its logical consequences (posterior predictive distributions) with the 
actual data, and in this sense they are more akin to the procedures of classical 
test theory to be discussed in the next chapter (Gelman and Shalizi 2012).12 

The hypothetico-deductive method determines the truth or falsity of a hypothesis 
H that implies a certain prediction E. If the implication is deductive (H ⊃ E), 
a failed prediction (¬E) falsifes the hypothesis (¬H). But the method does not 
go that easily when the hypothesis is formed by a conjunction of more than 
one premise, for in this case there is no principled way to single out the 
premise(s) responsible for the observed discrepancy. This is the general point 
made by the famous Duhem–Quine thesis. Duhem, and subsequently Quine, 
argued that since most if not all scientifc theories require multiple auxiliary 
hypotheses in order to produce a concrete prediction, one cannot conclude the 
falsity of a theory even if one of its predictions turns out to be false. The real 
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culprit may be one of the auxiliary hypotheses, and it is always possible to save 
the main body of the theory by an ad hoc tinkering of these. 

W. V. O. Quine, one of the most infuential philosophers of the 20th century, 
extended this idea from scientifc theories to knowledge in general and argued 
for epistemological holism, according to which no belief exists in isolation—rather, 
all beliefs are connected with other beliefs, forming a network (Quine 1951). 
In this picture, confrmation of knowledge cannot take place in a piecemeal 
fashion, by picking up a particular belief one by one and checking if it matches 
with a piece of experience. If all of our beliefs are connected directly or indi-
rectly to each other through logical or empirical laws, as holism holds, then 
what is tested by “the tribunal of sense experience” (Quine 1951, p. 38) is our 
entire network of beliefs together. A systematic discrepancy in such a holistic 
test urges us to revise some part of our belief system but does not pinpoint where: 
there is always more than one way to fx the network, and there is no single 
correct answer. 

The same issue arises in model checking. Posterior predictive distributions 
are derived from a conjunction of numerous premises, including assumptions 
not just about the prior distribution and likelihood, but also about IID, experi-
mental design, observation processes, data handling and processing, and so on. 
When we put the predictions derived in this way before “the tribunal of observed 
data,” we are actually testing the whole set of such assumptions, and there is no 
logical criterion for pinning down the responsible element when a discrepancy 
arises. The cause of a discrepancy may lie in some of the modeling assumptions 
(prior distribution or likelihood), or in extra-theoretical procedures (e.g., an 
inadequate data-gathering process or miscalculation). An analyst has to examine 
each of these possibilities and take the appropriate measure, which may be a 
re-specifcation of the model, revision of the experimental design, or recalcula-
tion. The process of model checking is thus more like a trial-and-error process 
of fumbling for a better model than a straightforward protocol guided by some 
external standard (Gelman and Shalizi 2012). This is reminiscent of Otto Neur-
ath’s famous metaphor, which likens scientifc practice to the ship of Theseus. 
According to Neurath, a scientifc theory or model is like a ship sailing in the 
wilderness of sea. As sailors, scientists must keep fxing the ship that has been 
damaged by the raging waves of experiments, in order to continue the journey 
as far as possible. Repeated repairs may transform the ship into an utterly dif-
ferent shape. And no matter how hard their ship gets wrecked by accumulated 
anomalies, scientists cannot just step out and overhaul the whole ship from the 
outside. They have no other choice but to keep devising the best patches avail-
able on board to continue their journey. This metaphor applies nicely to Gelman 
et al.’s picture of elaborating a statistical model through repeated posterior model 
checks. They emphasize that Bayesian inferences do not end with a derivation 
of a posterior distribution: rather, the critical part of the statistical analysis lies 
in the subsequent process of repeatedly modifying the obtained model using 
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existing or new datasets. This kind of process of testing and mending necessarily 
takes on an ad hoc favor. At any rate, one cannot just “step out” of their statisti-
cal model and compare it with the ground truth from an external, god-like 
perspective. That is the fate of Neurathian scientists qua eternal sailors, and in 
this respect, statisticians are no exception.13 

The resulting perspective on the practice of Bayesian statistics prompts us to 
rethink the characterization of Bayesianism developed throughout this chapter 
as a foundationalist epistemology of the internalist kind. On this internalist 
interpretation, the validity of Bayesian inference hinges on two factors: the 
sound application of the logical rule (i.e., Bayes’ theorem) by which one derives 
one belief from another, and the adequacy of the premises that serve as the 
basis of the inference. In line with this scheme, traditional Bayesians have devoted 
much efort to justifying (a particular form of ) prior distributions, just as inter-
nalist epistemology has tried to justify our basic beliefs. Such a foundationalist 
picture, however, does not square well with Gelman et al.’s approach, which 
highlights the continuous process of model checking as the key element of 
Bayesian inference. This new picture is much more holistic in spirit, and as 
such it does not require any “basic belief ” that would serve as an Archimedean 
point for the entire inferential process. Quine (1951) argued that even mathemati-
cal objects and rules are not eternal truths engraved on stone, but are mere 
instruments that we use for understanding the world and predicting the future. 
Likewise, prior distributions are not fundamental premises but just one of the 
tools (a regularization device; see Chapter 4) we use to prevent models from 
overftting the data (Gelman and Shalizi 2012). According to this holistic inter-
pretation, Bayesian inferences depend not just on prior distributions but also 
on the likelihood and other theoretical as well as empirical assumptions, and it 
is the entire network consisting of all such heterogeneous elements that is assessed 
by model checking. In this sense, those assumptions concerning data-gathering 
and handling processes, which are often considered “outside” of statistical mod-
eling proper, are on a par with the fundamental mathematics of Bayesian statistics, 
and call for equal care in the inferential practice. 

Such a holistic assessment may go beyond the internal system of beliefs. 
Recall that “beliefs” in the Bayesian framework, strictly speaking, are limited 
to elements in the sample space that can be assigned a subjective probability 
(see Section 2.1). On the other hand, the various assumptions about models, 
experimental design, measurements, and other factors are usually not part of 
the sample space, and as such are not things that are assigned probabilities or 
“degrees of belief.” A diehard subjectivist might still argue that such assumptions 
must exist in the mind of an analyst in the form of belief. But this response 
does not cut much ice, for even if we grant that these assumptions are indeed 
“beliefs,” they difer in nature from beliefs in the technical sense, defned in the 
formal framework of the semantics of subjective probability, and as such they 
do not admit of degrees measured by a probability value. The metaphysical 
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rejoinder, therefore, does not afect the point that Bayesians must take into 
account those assumptions that cannot be rendered into beliefs in the technical 
sense. This implies that the process of inductive reasoning as a whole cannot 
be confned only to the system of beliefs internal to an epistemic agent and the 
logical relationships between them. Even if the posterior distributions can be 
derived from a belief calculus using Bayes’ theorem, checking the empirical 
adequacy of the calculated result calls for a reference to external assumptions. 
Holistic Bayesians on board Neurath’s ship will have their eyes open to the 
external world beyond their beliefs. 

2.3.4 Summary: Epistemological Implications 
of Bayesian Statistics 

A statistical method is an epistemological procedure for justifying scientifc 
hypotheses on the basis of data. Building on this view, in this chapter we ana-
lyzed Bayesian statistics as an internalist epistemology that aims to justify our 
degree of belief in a given scientifc hypothesis in terms of the data, likelihood, 
and prior probabilities. This view of justifcation as an inferential relationship 
is motivated by the principal tenet of internalism, namely, that only those beliefs 
appropriately inferred from legitimate evidence count as knowledge. Although 
internalism does seem to capture an important aspect of our conception of 
justifcation, it faces the difcult problem as to how and why justifcation, 
understood in this way as a subjective relationship, can ever be truth-conducive— 
that is, on what grounds can one say that internally justifed beliefs are also 
objectively true? Exactly the same kind of problem has been raised against tradi-
tional Bayesianism. Karl Popper, a philosopher of science known for his celebrated 
falsifcationism, is one of those critics. He denounced Bayesian statistics as mere 
psychologism, preoccupied with calculations of the subjective opinions of indi-
vidual scientists, which is utterly inadequate for a scientifc investigation about 
the objective structure of the world (Popper 1959). Popper’s criticism is targeted 
precisely at the truth-conduciveness of Bayesian justifcation. Bayes’ theorem 
may allow epistemic agents to adjust their beliefs in a coherent fashion; but 
whether these beliefs are objectively correct or not is a diferent question, one 
that is arguably much more important in scientifc contexts. 

We have seen two responses to this criticism from the Bayesian camp. One is 
to fully admit the subjective nature of Bayesian justifcation, but to argue that 
repeated application of the justifcatory process through numerous trials or observa-
tions will bring the posterior distribution closer to the truth. The sequential process 
where one justifes a new prior using the posterior distribution of the previous trial 
may be thought of as a kind of inferential “regress.” While most philosophers have 
been concerned that such a regress will not bring us anywhere, the law of large 
numbers guarantees that the infnite “regress” of Bayesian justifcation will converge 
to the truth, and this gives the Bayesian a rationale for this type of response. 
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However, iterating the justifcatory procedure ad infnitum or even sufciently 
many times is not a realistic option in many situations. Practical limitations in 
data, time, and resources in real-life problems call for an alternative strategy, 
which is to justify the prior distribution and likelihood—the premises of Bayes-
ian inference—in some way or another. This strategy either invokes extra 
postulates, like the principle of indiference or Lewis’ “principal principle,” in 
order to stop the justifcatory regress, or checks the adequacy of the premises 
by comparing the result of the Bayesian estimation with the data in a hypothetico-
deductive way. The latter two strategies are a posteriori in nature in that they 
evaluate the adequacy of the assumptions (prior distributions and likelihoods) 
in light of observed data. The “justifcation” of the premises obtained in this 
way, however, difers in nature from the concept of justifcation proper to 
Bayesianism, where it is understood as a mathematical/deductive relationship 
among propositions, and this leaves open the question as to in what sense the 
premises can be said to be justifed, if at all. 

Here we encounter the fundamental difculty inherent to internalist episte-
mology. Internalism, by defnition, locates the justifcatory process within the 
mental resources and activities accessible to an epistemic agent. Logic and prob-
ability are powerful vehicles for generating inferential relationships among the 
beliefs held by such an agent. As one might easily expect, however, this strategy 
faces the difcult problem of relating internal beliefs to external facts. This was 
exactly the point of the Sellarsian criticism of the “Myth of the Given,” which 
suggests that the process of justifying beliefs can never be completed within a 
subject. Likewise, if Bayesian statistics is to be confned entirely to the internalist 
process of justifcation, this can be done only by taking its premises about prior 
distributions, likelihoods, and data as “given,” not admitting of any further 
justifcation. But in this case, one loses all means of answering the skepticism 
as to whether the resulting estimation or conclusion correctly captures the way 
the world actually is. In contrast, the idea of model checking introduced in the 
previous section takes Bayesian inference not as a one-way deduction from the 
given, but rather as a sort of continuous dialogue between the analyst and nature, 
in which the predictions of a model are compared with new data to test the 
model’s assumption ex-post facto. Since all the assumptions making up the analysis, 
including not only the priors and likelihoods but also those concerning experi-
mental design and measurement, must be taken into account in such a test, it 
takes on a holistic character. The goal of statistical analysis, then, is to amend 
and improve the holistic network of assumptions and beliefs so that it better 
accommodates experience. At the same time, this forces us to step out of the 
well-defned mathematical realm of “beliefs” defned on a sample space, and 
into the unformalized, qualitative problems of grasping the outer world and 
assessing our experimental and measurement setups. How do these heterogeneous 
assumptions work together in inductive reasoning, and what role do they play 
in Bayesian inferences? These are philosophical as well as practical questions, 
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under which lies the time-honored philosophical conundrum of how subjective 
models can ever latch onto an objective reality. 

Further Reading 

For philosophical textbooks on the interpretative/semantic issue of probability, 
see Gillies (2000), Childers (2013), and Rowbottom (2015), which also cover 
various other interpretations, such as the logical and propensity interpretations, 
not discussed in this book. It is impossible to single out a textbook on Bayesian 
statistics: Hof (2009) provides a balanced overview of the foundations as well 
as the practical applications of Bayesian statistics, while Gelman et al. (2004) is 
the standard reference in the feld. Bayesian epistemology is often called formal 
epistemology; Jefrey (2004) and Bradley (2015) give good introductions to this 
topic. For more in-depth philosophical analyses of Bayesian statistics, Earman 
(1992) and Howson and Urbach (2006) are classic monographs, and Sober 
(2008) also devotes a chapter to Bayesianism. McGrayne (2011) gives an enjoy-
able account of the history of Bayesianism. There are many introductory text-
books on philosophical epistemology, among which Nagel (2014) and Pritchard 
(2014) are the most accessible. 

Notes 

1. A contradiction is a proposition that is never true, such as “Today is Monday and 
today is not Monday.” 

2. Here we limit our discussion to at most a fnite number of propositions. For the case 
of a countably infnite number of propositions, see Gillies (2000, sec. 4.3). 

3. In contrast, the logical interpretation of probability asserts that there must be a single 
correct probability assignment. This view takes probability as denoting a logical rela-
tionship, where one proposition is partially entailed by another. See Gillies (2000) for 
details. 

4. To be precise, since we are here considering a probability distribution over uncount-
ably many parameter values, what we are really calculating are posterior probability 
densities. See Section 1.2.2. 

5. While our derivation of the posterior predictive distribution here is based on an 
intuitive argument, a closer look reveals that this derivation too relies on the assump-
tions of uniformity and a statistical model. Applying the law of total probability to a 
conditional probability, the posterior predictive probability can be expanded as: 

P e | e ) ˜ °P e |˛ , ) (  | e d˛( (  e P ˛ ) .  

From the assumption in Figure 1.2, observed data e and unobserved data e  are medi-
ated only via the underlying uniformity. Hence, if this uniformity is adequately 
captured by a statistical model, the two kinds of data can be made independent by 
fxing the model’s parameter—or in a philosophical parlance, the unobserved data e 
is screened-of from the observed data e by parameter θ. The equality P e(  |˜ ) ° P e(  |˜ ,e ) 
thus holds for all θ, yielding the equation in the main text. Here again, a crucial role 
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is played by the assumption of uniformity (the IID condition) as well as the assump-
tion that this uniformity is well-captured by a statistical model. 

6. This diference might seem negligible at frst sight. One may, for example, propose 
to set a certain threshold and accept any hypothesis whose posterior probability exceeds 
that threshold. But this strategy does not work, as is shown by the well-known lottery 
paradox. Imagine 100 lottery tickets, among which only one is a winning ticket. For 
each ticket, the probability of it being blank is 0.99. Hence, if we decide to accept 
as a truth any proposition having probability 0.99 or greater, then we end up judging, 
for every ticket, that it is blank. This, however, contradicts our supposition that one 
out of the 100 tickets is not blank. Note that the same contradiction can be obtained 
for an arbitrarily stricter threshold by increasing the number of lots. This paradox 
implies that a set of beliefs that is taken as (a candidate for) “knowledge” according 
to a certain threshold is not logically closed. This goes against our expectation that 
knowledge should be logically closed (so that the logical consequence of a piece of 
knowledge should also count as knowledge), and is thus considered paradoxical. 

7. But some epistemologists, called infnitists, do allow justifcation by infnite regress 
(Klein 1999). 

8. However, whether limit theorems really bear out the objectivity of Bayesian inference 
even at the limit has been questioned by some (e.g., Glymour 1981). I thank Jimmy 
Aames for bringing this point to my attention. 

9. Or, in its modern formulation, it tells us to adopt the prior distribution that maximizes 
entropy, which is considered a measure of uncertainty (Jaynes 1957). This is called 
the Maximum Entropy Principle, and the branch of Bayesianism that emphasizes this 
principle is called objective Bayes (Williamson 2010). 

10. In the epistemological literature, the degree of belief, called credence, is distinguished 
from the objective chance of a phenomenon’s occurrence. Let us write ch

A
(H) = x 

to denote that some agent A believes that the chance that a phenomenon H will 
occur is x, where 0 ≤ x ≤ 1. The principal principle then asserts that A’s degree of 
belief P

A 
must satisfy 

° H x.P HA | chA( ) ˜ x ˛ ˜ 

11. To be precise, the principle attempts to justify the degree of belief of an event in 
terms of another belief that the agent has about the chance of the target phenomenon. 
But this only pushes the problem back, since one can still ask how such a belief about 
chance is justifed. 

12. In many cases, however, model checks are carried out by a simple inspection of the 
match between the model’s conclusion and data. And even if a statistical test gives a 
poor ft (such as a low p-value), this does not logically falsify the model’s assumptions, 
for these are by nature stochastic hypotheses (see Section 3.2.1 of this book and Sober 
2008). 

13. Gillies (2009) and Sober (2015) also discuss, in diferent ways, the implications of 
Neurath’s idea for Bayesian inference. 



 

3 
CLASSICAL STATISTICS 

In this chapter we turn to classical statistics, in particular its theory of testing. 
Although the idea of statistical testing can be traced back to the early 18th 
century, when Scottish physician John Arbuthnot set out to test whether the 
birth rates of boys and girls are equal using London birth records spanning over 
82 years (Hacking 2016), its theoretical basis was furnished only in the 20th 
century, largely by the hands of Sir Ronald Fisher, “the founding father of 
modern statistics,” and later Jerzy Neyman and Egon Pearson (Karl Pearson’s 
son). Their seminal work pushed classical statistics into the mainstream of infer-
ential statistics, where it virtually reigned as the standard statistical method until 
its hegemony was challenged toward the end of the 20th century, as Bayesian 
statistics came to gain popularity thanks to the growth of the power of comput-
ers. Even today, some of the characteristic terminology of classical statistics like 
“statistical signifcance” and “p-value” belong to common vocabulary and appear 
not only in scientifc literature but also in the popular media. Despite this 
popularity, however, the exact meaning of these terms, as well as the underlying 
ideas of classical statistics, is much less understood. Indeed, the logic underlying 
statistical testing is rather intricate and less intuitive than the Bayesian concept 
of updating beliefs based on data, and this sets a high bar for understanding 
classical statistics. 

Classical and Bayesian statistics, both being part of inferential statistics, share 
the same goal of capturing the probability model that underlies the observed 
data. They disagree, however, in the following two respects. First, their inferential 
practices are rooted in diferent conceptions of probability. While Bayesians 
interpret probability as a subjective measure of the degree of belief, in classical 
statistics it is defned objectively, as the relative frequency of a sequence of 
events. Second, they have diferent takes on what constitutes inductive 
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reasoning. In Bayesian statistics, inductive reasoning means the adjustment of 
beliefs about a probability model on the basis of data. Classical statistics, on the 
other hand, makes an inference by framing some defnite hypotheses about the 
probability model and then testing them vis-à-vis the data. This implies that 
Bayesian and classical statistics embody distinct epistemologies, which difer not 
just in their methodology but also in their very conception of inference, giving 
diferent answers to the question of what inductive reasoning really is. With 
this in mind, we begin this chapter with a brief review of the semantics of 
probability in classical statistics. We will then look at its methods and episte-
mological implications. 

3.1 Frequentist Semantics 

Probably the most familiar conception of probability is that it refers to the 
frequency with which a type of event occurs. To say that a coin has a one-half 
chance of landing heads means, according to this common idea, that when we 
toss the coin repeatedly, the ratio of heads and tails will be equal. Frequentism 
takes this to be the very meaning of probability and argues that the probability 
is nothing but a relative frequency, i.e., the number of occurrences of a given 
type of event in repeated trials, divided by the total number of trials. But this 
idea does not work as it stands, for the number of trials we can conduct is 
always fnite, whereas fnite sequences of the same kind of trial rarely result in 
the same frequency. Toss a fair coin 100 times and record the number of heads, 
and your count will rarely be exactly 50; in the next set of 100 tosses you will 
likely get a diferent number. This apparently leads us to the troublesome con-
clusion that the probability of a given type of event—here, tossing the same 
coin—cannot be uniquely determined. This can be avoided by extending the 
sequence of trials from a fnite one to an infnite one. The relative frequency 
of a given type of event may fuctuate in fnite sequences, but it should converge 
to a single value if it is repeated indefnitely. The probability of an event-type 
is defned as the ideal limit point of such an infnite sequence. This convergence 
process is demonstrated in Figure 3.1, which is a record of my tossing a coin 
thousands of times—well, not really; it’s actually a simulation run on my com-
puter. The plot shows that the relative frequency of heads approaches one-half 
as the trial continues, and from this we can conclude that the probability of 
landing heads when we toss a fair coin (or to be exact, its simulation) is 
one-half. 

Let’s exploit this idea using the notion of a probability model that we 
defned in Chapter 1. Recall that our sample space Ω contains all the possible 
outcomes of a trial, say a coin toss, where an event like “landing heads” is 
expressed with a random variable defned over Ω. Let us denote a single coin 
toss as ω ∈ Ω. What we are interested in is the sequence of coin tosses C

n 

= {ω
1
,ω

2
, .  .  ., ω 

n
}, which is called a collective. If we express the event 
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FIGURE 3.1 Coin toss simulation, which shows that the relative frequency of heads 
approaches to one-half as the number of trials increases. 

of getting heads in the ith trial using the random variable H(ω
i
) = 1, then 

H = 1 is the set of all tosses in which we land heads.1 Then the probability 
of landing heads is defned as the limit as we increase the number of trials n 
indefnitely, i.e., 

H ˜ °C1 nP H ˜ 1)( ˜ lim 
n˛˝ Cn 

where |A| is the cardinality (roughly, the number of elements) of the set A. That 
is, the desired probability is the number of heads in the sequence C

n
 divided by 

the total number of trials, provided that the trial goes on indefnitely. It is easy 
to check that the probability defned in this way satisfes the probability axioms. 
The relative frequency of an event A will never be smaller than 0 or larger than 
1, so that 0 ≤ P(A) ≤ 1, satisfying the frst axiom. If we take the whole sample 
space Ω as an event, the numerator on the right-hand side becomes |Ω ∩ C

n
| = 

|C
n
|, in which case P(Ω) = |C

n
|/|C

n
| = 1 in the limit n → ∞; hence the 

second axiom is satisfed. Finally, if A and B are mutually exclusive, we have 
|A ∩ C |/|C |+|B ∩ C |/|C | = |(A ∪ B) ∩ C |/|C |. Taking the limit, we 

n n n n n n 

can confrm a simple case of the third axiom, P(A ∪ B) = P(A) + P(B).2 

The biggest advantage of frequentism is that it defnes probability objectively 
in terms of frequencies, which are directly observable. Recall that probabilities 
in the subjective interpretation are based on the subjective beliefs of individuals. 
What probability values an epistemic agent assigns to their beliefs is totally up 
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to that agent as long as those values satisfy the probability axioms, and so there 
is no guarantee that these values are consistent among diferent individuals. If, 
on the other hand, probability is defned as a frequency which in principle can 
be observed by anyone attending to the trial, its value should be uniquely 
determined according to the way the world actually is. Frequentists take this 
objectivity and communal character as a big beneft of their interpretation. 
There is a catch, however. For one thing, frequentist probability is not an actual 
relative frequency but an ideal limit which would be observed in an infnite 
sequence of trials. Given that no real person can complete an infnite number 
of trials, the fnal result of these trials remains hypothetical and can be expressed 
only in terms of the value that would be obtained if we were to continue the 
trial indefnitely. This raises the difcult problem as to how one can make a 
judgment about the result of an infnite number of trials based on a fnite 
number of outcomes. Earlier, I claimed that the trend in Figure 3.1 will con-
verge to one-half as the trial is repeated—but how can I be so sure? The mere 
fact that the relative frequency observed so far is approaching one-half does not 
aford any basis for my conjecture. It is possible that the coin suddenly begins 
landing only tails from the 1001st trial on, with the relative frequency converg-
ing to zero. It doesn’t matter how long we continue the trials: the turning point 
of the trend may be the thousandth trial, millionth, billionth, or even later. To 
deal with this issue, Richard von Mises, who put the frequentist idea on a 
rigorous theoretical ground, required that the “collective” on which probabilities 
are defned must be random. Certainly, a sequence that suddenly changes its 
trend at the nth trial is hardly random. But what is randomness, exactly? This 
is indeed a deep and fascinating problem, but instead of delving into it here, 
we simply refer the interested reader to the relevant literature (Gillies 2000; 
Childers 2013). 

An important feature of frequentism is that probabilities can be assigned 
only to “collectives.” This has several implications. The frst is that events that 
cannot be observed repeatedly, like those events that happened or will happen 
only once in the earth’s history, cannot have a probability in the frequentist 
sense.3 This marks a contrast to the subjective interpretation, which has no 
problem talking about the probability of—or one’s degree of belief in—events 
like the extinction of the dinosaur due to the meteorite impact 65 million 
years ago, or that Kyoto will be sunny on New Year’s Day 2050—for subjec-
tivists can just make a bet about these events. Such talk about probability, 
however, is nonsense according to frequentism, for in order to think about 
the frequencies of these events, one needs to be able to repeat the entire his-
tory of the earth infnitely many times and take records, which hardly makes 
objective sense. 

Second, even for events which can be repeated (infnitely) many times, we 
cannot meaningfully ask what the probability of each trial or instance of those 
events is. Although it makes sense to say that the probability of this coin landing 



 

 
 
 

 
 
 
 
 
 
 
 

   
 

 
 

 

78 Classical Statistics 

on heads is one-half, saying that the probability of this coin landing heads on 
the next toss is one-half violates the frequentist grammar. This is because the 
particular trial of tossing the coin now is a one-time phenomenon and does 
not constitute a frequency. It is only when that particular trial is considered as 
an element of a “collective” of an infnite sequence of coin tosses that we can 
think about its frequency. Even in that case, the frequency is defned as a prop-
erty of the set of trials understood as a collective, and not of any of its individual 
elements. It is not the case that each coin toss has its own “frequency” which 
accumulates to defne the relative frequency of the whole sequence. Or, to 
rephrase in philosophical terms, the frequentist probability is defned exclusively 
with respect to a type, and it is a categorical mistake to apply it to concrete 
tokens.4 

The last, and probably most important, implication for the practice of statistical 
inference is that the frequent interpretation forbids any talk about the “probability 
of a hypothesis” as meaningless. Let us illustrate this by taking the general theory 
of relativity as a scientifc hypothesis. Can we meaningfully think about the prob-
ability that this hypothesis is true? If we are to make sense of this probability in 
the frequentist framework, we would need to imagine a “collective” of universes 
and ponder how many of them obey Einstein’s laws. This sounds like a futile 
speculation at best, and in any case such a “collective” would never be observable. 
What we can observe is at most just one sample, this world; and whether the 
theory of relativity holds or not in this world is already determined, even if it is 
unknown to us. So there is no room for frequencies here. Likewise for any other 
scientifc hypothesis. “Smoking causes cancer,” “This urn contains equal numbers 
of red and white balls”—these hypotheses state the ways (a part of ) the world 
actually is, and whether known to us or not, they are already fxed on the side 
of the world (provided we ascribe to determinism and ignore quantum uncertain-
ties). Scientifc hypotheses are descriptions of the objective world, which exists 
as something fully determined. Thinking about the probability or frequency of 
hypotheses, therefore, is nonsense from the frequentist perspective. 

This means that in classical statistics, which stands on the frequentist inter-
pretation of probability, it does not make sense to update the probability or 
degree of belief of a hypothesis about a probability model on the basis of data, 
as Bayesians do. The frequentist semantics of probability therefore calls for a 
diferent kind of epistemology. This alternative epistemology is embodied in 
statistical hypothesis testing. Statistical theories of testing make a certain hypothesis 
about the world and see whether it accords with the data. The hypothesis is 
rejected or retained based on the goodness of ft. Such a judgment is necessarily 
fallible, but under certain presuppositions one can calculate the long-term error 
rate of a particular test, i.e., the frequency of incorrect as well as correct verdicts. 
Classical statistics looks for the test that minimizes these error rates and makes 
judgments about the probability model based on this test’s results. Let us now 
look into this epistemological side of classical statistics in the next section. 
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3.2 Theories of Testing 

3.2.1 Falsifcation of Stochastic Hypotheses 

The underlying idea of statistical testing shares some similarities with Popper’s 
falsifcationism. As seen earlier, Popper dismissed Bayesian inductive reasoning 
qua belief updating as a naive psychologism which falls short of an objective 
scientifc methodology. His counterproposal is the famous idea of falsifcationism, 
according to which science proceeds through a cycle starting with the formation 
of a hypothesis, followed by testing and refutation, which then leads to the 
formation of a new, better hypothesis. Scientists frst propose a certain hypothesis 
about the phenomenon of interest. The hypothesis implies several predictions, 
which are then compared with observed data. If the predictions do not accord 
well with the data, scientists reject the hypothesis as false and start looking for 
a better hypothesis. But what if the predictions are successful? Even in that case, 
one cannot be sure that the hypothesis is right, for concluding so on the basis 
of a successful prediction amounts to the fallacy of afrming the consequent. 
The only thing we can say for sure is that the hypothesis survived this particular 
test, and this does not give us any guarantee for the next test. What scientists 
should do, then, is derive further predictions from the hypothesis and put it to 
yet another test by comparing them with new data. Again, passing this new 
test does not prove the truth of the hypothesis. Indeed, the hypothesis forever 
remains a tentative placeholder, which may turn out to be false in the future. 
There is no guarantee that it will reach the truth, and even if it does, there is 
no way of telling. But at least we can rule out false hypotheses by continuing 
this survival game. Popper thus described science not as an asymptotic approach 
toward the truth but as a process of systematically plowing out falsehood. 

We noted earlier that it is a logical fallacy to afrm a hypothesis from the 
success of its predictions. On the other hand, the falsifcationist procedure of 
rejecting a hypothesis on the basis of the failure of its predictions is a logically 
valid inference called modus tollens. In efect, it is the underlying logic of the 
hypothetico-deductive method, in which one infers the falsity of a hypothesis 
(¬H) in case the hypothesis implies a certain prediction (H ⊃ E) that does not 
hold (¬E). But this applies only when the hypothesis logically implies the predic-
tion, in which case the predicted phenomenon must necessarily occur should the 
hypothesis hold. Only in such a case does a failed prediction logically falsify the 
hypothesis. Actual scientifc hypotheses, however, hardly make such decisive pre-
dictions. The hypothesis that smoking causes cancer, for example, does not claim 
that all smokers inevitably get cancer without exception; it just makes a stochastic 
prediction to the efect that, ceteris paribus, smokers tend to develop cancer more 
often than nonsmokers. And once we accept that the prediction of a hypothesis 
is stochastic, modus tollens is no longer applicable. Many heavy smokers have lived 
to a ripe old age (Winston Churchill being one), but that does not refute the 
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cancer hypothesis. In general, one cannot reject a hypothesis even if we observe 
a phenomenon that is deemed very unlikely under that hypothesis.5 

To verify this, let’s return to the lottery box we used in the previous chapter. 
Suppose you are surmising that today’s box is B, which contains 3 winning 
tickets out of 10. Suppose further that all three people in front of you draw a 
winning ticket. The probability of drawing three consecutive wins from box B 
is (3/10)3 = 0.027; that is, it is a fairly rare event that happens no more than 
three times out of a hundred. Should you then reject your box B hypothesis, 
given that something very unlikely according to that hypothesis happened? Of 
course not. For, by assumption, the box is either A or B, and if the box were 
A, the winning probability would be even lower (10%); hence, the observation 
of three consecutive wins, far from rejecting the box B hypothesis, supports it. 

We ought to draw two morals from this hypothetical story. One is that the 
likelihood of any stochastic hypothesis, i.e., the probability that particular data 
are observed under that hypothesis, can be arbitrarily small. If trials are inde-
pendent, the probability of the obtained sequence of data is the product of the 
probability of each trial, none of which exceeds one. Hence, by multiplying 
them over and over, the probability of the whole sequence becomes smaller 
and smaller as the sample size increases. Thus, the small likelihood of a hypothesis 
by itself does not amount to either a falsifcation or confrmation of that 
hypothesis. Second, in order to judge the truth or falsity of a hypothesis on the 
basis of its likelihood, one also needs to consider what would happen if that 
hypothesis were false. If we take the three consecutive wins as evidence for the 
box B hypothesis, that is because we assume that if the box were not B, it 
should be A, in which case the winning probability would be even lower. If 
the alternative possibility had been yet another box C, 50% of whose tickets 
are winning tickets, the same result would have given us reason to reject the B 
hypothesis. In testing a stochastic hypothesis, therefore, we need to consider 
not just its likelihood, but also the probability of obtaining the same result if 
that hypothesis were false, that is, the likelihood of its rival hypotheses (Hacking 
2016; Sober 2008). 

3.2.2 The Logic of Statistical Testing 

Based on the aforementioned idea, the Neyman–Pearson theory of statistical 
testing—which forms part of the theoretical core of classical statistics—conducts 
a test on a stochastic hypothesis by pairing it with its rival hypothesis. The 
target hypothesis that we want to test is called the null hypothesis (or “null” for 
short) and denoted by H

0
, whereas its rival is called the alternative hypothesis 

(likewise, “alternative”) and denoted by H
1
.6 The goal of a test is to decide 

whether to reject or not reject (i.e., retain) the null hypothesis in the face of 
observed data. The most standard way to implement this decision procedure is 
to compare the likelihood of the two hypotheses. 
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Let’s illustrate this with an example. A coin issued in country X has a rounded 
edge and does not stand vertically. Though imperceptible by unaided eyes, the 
rounding fnish of the coin is not even, so it lands heads only once in four 
times when tossed. The earliest batch of these coins that were minted, however, 
were pressed with the front and back on opposite sides due to a defect of the 
minting machine, and as a result they land heads three in four times. This error 
coin is very rare and has been traded at a high price among collectors. One 
day, you go to a fea market and fnd a fshy guy who trades this coin. His 
price is very reasonable should it be a genuine error coin. Unsure about its 
authenticity, you ask the guy whether you can test it by tossing it a few times. 
He allows you to toss it ten times, but not any further for fear of damaging 
the coin. You thus set out to conduct a hypothesis test to decide whether to 
buy the coin or not. Your null hypothesis—the hypothesis you are trying to 
reject—is that this coin is fake (not a genuine error coin). The more heads you 
get, the more reason you have for rejecting the null hypothesis. The question, 
then, is: how many heads out of 10 tosses would you need, at least, to decide 
to reject the null hypothesis and buy the coin? 

The desired threshold is called the critical region. If the obtained data fall 
within this prespecifed region, the test rejects the null hypothesis. Deciding 
how to conduct a statistical test ultimately boils down to setting its critical 
region. The frst thing to be noted, however, is that no matter how the critical 
region is specifed, no test can avoid the possibility of error, as long as the target 
hypothesis is stochastic. There are two types of possible error: 

Type I error: falsely rejecting the null when it is actually true (false positive). 
Type II error: falsely retaining the null when it is actually false (false negative). 

In the present context, the type I error amounts to being tricked into buying a 
fake, whereas the type II error amounts to missing the opportunity to get a genuine 
error coin at a bargain price. The probability that a given test commits the type 
I error is usually denoted by α, and the type II error by β. Since these error rates 
depend on how the critical region is specifed, the task of statistical test theory 
boils down to fnding the critical region that minimizes these error rates. 

3.2.3 Constructing a Test 

Let us look into this procedure by actually building a test in line with our 
example. As we saw in Chapter 1, the number of heads in 10 coin tosses fol-
lows the binomial distribution, with the parameter θ representing the probability 
of the coin’s landing heads. The null hypothesis that the coin is fake is H

0
: 

θ = 0.25, while the alternative that it is a genuine error coin is H
1
: θ = 0.75. 

Under this setup, let us frst calculate the type I error rate α. Since this is the 
probability of rejecting the null when it is true, we assume H

0 
to be true and 
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seek the probability of getting x heads under this assumption, that is, the likeli-
hood of the null hypothesis for each X = x. Let us express this likelihood by 
P(X = x; H

0
).7 From the binomial distribution with θ = 0.25, n = 10, we have 

P(X = x;H
0
) = 

10
C 

x
(0.25)x(0.75)10−x . 

The upper histogram in Figure 3.2 shows the probability values obtained by 
substituting the values 0 to 10 for X in the aforementioned formula. Now, we 
were trying to devise a test that will reject H

0 
if the number of heads exceeds 

a certain threshold x′. Since the upper histogram of Figure 3.2 shows the prob-
ability of each number of heads when H

0 
is true, the probability that the test 

erroneously rejects the null—that is, its type I error rate α—should be obtained 
by summing all the probability values to the right of a certain threshold x′. 
With this in mind, consider the following three tests: 

A. Let us agree to reject H
0 
only when x′ = 10—that is, when all the tosses result 

in heads. Since P(X ≥ 10;H
0
) = 0.00000095, this test commits the type I error 

once in a million times at most. 
B. Lower the bar and consider a test that rejects H

0 
if more than fve heads are 

observed. Then its type I error rate is P(X ≥ 6;H
0
) ∼ 0.020, i.e., 2%. 

C. Consider an even looser test, which rejects H
0 
if more than four heads are 

observed. Its type I error rate increases to P(X ≥ 5;H
0
) ∼ 0.078, i.e., about 8%. 
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FIGURE 3.2 An example of a statistical test with a simple null hypothesis H
0
: θ = 

0.25 versus a simple alternative hypothesis H
1
: θ = 0.75. The histogram 

above (below) shows the probability that the number of heads exceeds 
x, given that H

0 
(H

1
) is true. The dark gray area represents a test (test 

B in the main text) which rejects H
0 
if more than fve heads are observed 

(the upper part is the type I error rate α and the lower part is the type 
II error rate β). 
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The aforementioned comparison makes it clear that the probability of the 
type I error (of falsely rejecting the null hypothesis when it is true) is determined 
by how we set the critical region, which is tantamount to selecting a particular 
test. The type I error rate of a given test is called the signifcance level. A test 
with a lower signifcance level (i.e., a smaller α) has a smaller risk of rejecting 
a true H

0 
by chance, which gives us good reason for taking the verdict of rejec-

tion from such a test seriously—that is, as signifcant. 
But we should not jump to the conclusion that the test with the lowest signif-

cance level, in our case test A, is always the best. For paring down the false positive 
rate tends to infate the false negative rate, i.e., the probability of the type II error 
of failing to reject the false null hypothesis. So let us now calculate this probability. 
Since a type II error means overlooking the true alternative hypothesis H

1
, we 

assume H
1
: θ = 0.75 is true. We are then picturing a probability distribution of 

the coin toss outcomes that difers from the one we considered earlier. Let us 
denote the probability of getting x heads under this alternative hypothesis by P(X 
= x;H

1
). Since this is the binomial distribution with θ = 0.75, n = 10, we have 

x ˝xP X° ˜ x H  C ( . ) ( .0 75 0 25 10; ˛ ˜ ) ,1  10 x 
as shown by the bottom histogram in Figure 3.2. 

We arranged our test so that it rejects the null when the heads count exceeds 
x′. In other words, the test does not reject the null when the count is equal to 
or less than x′. Since the bottom part of Figure 3.2 is the distribution when 
the null should be rejected, the probability of our test’s committing a type II 
error β can be obtained by summing all the probability values to the left of the 
threshold x′. Doing the math with the three tests above, we obtain: 

A. The test with the threshold x′ = 10, which rejects H
0 
only when all tosses 

result in heads, has a type II error rate β of P(X < 10;H
1
) ∼ 0.944, which is 

about 95 out of 100 times. 
B. The test that rejects H

0 
if more than 5 heads are observed: β = P(X < 6;H

1
) 

∼ 0.078, i.e., 8 out of 100 times. 
C. The test that rejects H

0 
if more than 4 heads are observed: β = P(X < 5;H

1
) 

∼ 0.020, i.e., 2 out of 100 times. 

What we see here is a trade-of between the type I and II error rates. The 
test that sets the threshold as high as 10 heads may certainly minimize the false 
positive rate, but it overlooks most of the cases in which the null should be 
rejected. On the other hand, lowering the bar to 4 heads may help us detect 
a false null hypothesis but also increases the risk of erroneously rejecting the 
null when it is actually true. The inevitability of this trade-of is also apparent 
in Figure 3.2: sliding the critical region to the right increases the type II error 
below, while sliding it to the left increases the type I error above. 



 

 

  

 
 
 
 
 
 
 
 

 
 
 
 

  
 

 
 
 
 
 

 
 
 

 

84 Classical Statistics 

If the signifcance level α is the type I error probability of (erroneously) 
rejecting a true H

0
, then 1 − α is the probability of (correctly) retaining the 

true null. Since a test with a high 1 − α has a low risk of rejecting a true H
0
, 

we can be confdent when it does issue a rejection. For this reason, 1 − α is 
called the confdence coefcient, or simply confdence, of a test. On the other hand, 
since β is the type II error probability of failing to reject H

0 
when H

1 
is true, 

1 − β is the probability of not overlooking a true H
1
, which is called the power 

of a test. In many cases, we set the alternative hypothesis to the hypothesis we 
are interested in (in our example, this is the hypothesis that the coin is a genuine 
error coin). Thus, the power of a statistical test measures how well the test can 
detect the result we are interested in. 

Let’s put together the pieces outlined to this point to see how the actual 
testing practice proceeds. First, we determine the signifcance level. Generally 
it is set to 5% or lower, which means that we agree to tolerate mistakenly 
rejecting a true null up to once out of 20 times. Since test C, which has a 
signifcance level of 8%, does not satisfy this criterion, we adopt test B, which 
will reject the null hypothesis of the coin being fake if more than 5 heads are 
observed. Now suppose you (fnally!) toss the coin and get 7 heads. Since this 
falls within the critical region of test B, the null is rejected. Or, we can think 
of it this way. It is somewhat unlikely that we get 7 heads if the null hypoth-
esis, that the coin is biased toward tails, was true. Indeed, calculating from 
Figure 3.2, the probability of getting 7 or more heads is about 0.35%. The 
probability of obtaining, under the null hypothesis, a result at least as extreme 
as the one actually observed is called the p-value. Intuitively speaking, the 
p-value measures the “unlikeliness” of data provided the null hypothesis is 
true. If the result is so “unlikely” in this sense that it is below the level attrib-
utable to chance (i.e., the signifcance level), we reject the null. In this case, 
we rejected the null using test B, which has a signifcance level of 2%; but 
the fact that the p-value is 0.35% means that we could also have rejected the 
null even if we had set the signifcance level as low as that. In this way, the 
p-value contains information about not only whether or not the null should 
be rejected, but also the signifcance level at which it would have been rejected/ 
retained. For this reason, many scientifc practices attach high importance to 
this p-value. In this case, one frst calculates the p-value from the observed 
data and then makes a decision on the null hypothesis by comparing it with 
the prespecifed signifcance level. 

3.2.4 Sample Size 

In the previous example, you were allowed to toss the coin only 10 times. How 
would the inference improve if you were allowed to toss it 20 times? In this 
case, the likelihoods of the null and alternative hypotheses are given by binomial 
distributions with n = 20 (Figure 3.3). Since P(X ≥ 8;H

0
) ∼ 0.12 and P(X ≥ 
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FIGURE 3.3 The likelihoods of the null H
0
: θ = 0.25 versus the alternative H

1
: θ = 

0.75 when n = 20. The dark areas represent the type I and II error rates 
of the test, with the critical region set at more than 8 heads. That the 
two distributions do not overlap much means that the test has small 
error rates. 

9;H
0
) ∼ 0.04, the signifcance level falls below 5% from X ≥ 9, which suggests 

that we reject the null if more than 8 heads are observed. Calculating the prob-
ability of the type II error with this critical region, we obtain β = P(X < 9;H

1
) 

∼ 0.001. Recalling that the same error rate of test B applied to 10 coin tosses 
is about 0.078, i.e., that test B overlooks a true alternative hypothesis 8 out of 
100 times, we should regard this new error rate of one out of a thousand to 
be quite an improvement. From this we see that one can increase the confdence 
and power of a test by collecting more data. That is, a larger sample size makes 
us less prone to error when making a decision of rejection. 

3.3 Philosophy of Classical Statistics 

3.3.1 Testing as Inductive Behavior 

Given the overview of the testing procedure just presented, let us now pause 
to think about how we should understand this procedure and its results from a 
philosophical viewpoint. Recall that the notion of the probability of a hypothesis 
does not make conceptual sense in frequentism. It thus follows that, in contrast 
to Bayesian inference, the job of a statistical test is not to decide which hypothesis 
is more probable. For instance, when a null hypothesis is rejected at a signif-
cance level of 5%, this does not mean that the probability of the hypothesis 
being true is less than 5%.8 Such a statement is simply nonsense in the frequentist 
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framework. Indeed, one may be disappointed to know that a statistical test by 
itself does not make any direct judgment about the truth or falsity of the hypoth-
esis being tested (however, the qualifcation “direct” here will prove important 
later).9 Then what does it do? The goal of testing theories is to provide systematic 
rules or algorithms for making judgments about probability models on the basis 
of data. In efect, a test is a function that maps data to a dichotomous choice 
between rejection or retainment of a null hypothesis: it returns a rejection if 
the data fall in the critical region, and a retainment otherwise. Based on this 
result, we make an actual judgment as to whether we should really reject the 
null, which then leads to certain concrete behavior (like buying the coin in the 
previous example). If this is how a test is used in our decision procedure, it 
goes without saying that the algorithm we depend on should be as reliable as 
possible. “Reliable” here means that the given test has a small risk of making 
mistakes: it has a high probability of rejecting a hypothesis when it is false and 
retaining it when it is true. These accuracy rates are nothing but the confdence 
and power that we saw earlier, which can therefore be taken as measures of a 
test’s reliability. Note that the “probability” here is probability in the frequentist 
sense: it represents the relative frequencies or proportions of correct/incorrect 
answers when the test is conducted under similar situations over and over.10 

Specifcally, the confdence and power indicate, respectively, what percentage 
of the verdicts of rejection and retainment made by the test in its repeated 
application are actually correct. 

A statistical test, therefore, is a sort of diagnostic kit that returns a certain 
decision given some data, and testing theory measures and examines its reliability 
(Sober 2008). Thus, probability values like the signifcance level and the power 
assessed by such a theory are only properties of the test regarded as a diagnostic 
kit, and not properties of the hypotheses to which the test is applied (as in “probability 
of a hypothesis”), or of individual judgments resulting from applications of the 
test (as in “probability of this judgment being correct”). This is completely in 
line with the remark made in Section 3.1, namely, that probabilities for fre-
quentists are properties of “collectives” qua types, so that it is a categorical 
mistake to think about probabilities (i.e., relative frequencies) of individual 
phenomena qua tokens. Hence, although the proposition “the probability of 
getting heads by tossing this coin repeatedly is one-half ” makes sense according 
to the frequentist interpretation, the proposition “the probability of getting heads 
in the next toss of this coin is one-half ” doesn’t. Likewise, while it makes sense 
to ask about the relative frequency of correct answers in a long-run application 
of a given test, one cannot meaningfully ask about the accuracy rate of an 
individual decision resulting from this or that particular application of a test. 
This is why we stated previously that “a statistical test by itself does not make 
any direct judgment about the truth or falsity of the hypothesis being tested.” 

For these reasons, one of the founders of the theory of statistical testing, 
Jerzy Neyman, claimed that statistics does not provide a method of inductive 

Zili Dong
Highlight

Zili Dong
Highlight



 

 

 

  

 

Classical Statistics 87 

reasoning, contrary to the expectation of many. Inductive reasoning, in his view, 
aims to evaluate the truth or falsity of a hypothesis on the basis of data. How-
ever, as we have seen, statistical tests do not make such judgments. What they 
profer is a policy to guide our decisions under uncertainty. Because such deci-
sions are part of our behavior, testing theory must be understood as a theory 
not of inductive reasoning, but of inductive behavior, or so argued Neyman (1957). 

In fact, Neyman was not the frst to emphasize the relationship between 
induction and behavior—a similar idea was espoused by David Hume, whom 
we encountered in Chapter 1. Recall that Hume denied the logical validity of 
inductive reasoning. Hence, if reasoning is to be understood as a valid deriva-
tion of a conclusion from premises, there is no such thing as inductive reasoning. 
This, however, does not prevent us from making inferences about the future 
from the past and acting accordingly. In efect, this kind of behavior is a habit 
of mind, which is engraved in us by repeated experience to form a code of 
conduct (Hume 1748). This habit governs our behavior in such a way that a 
certain experience, say of observing dark clouds, prompts us to perform a certain 
action, say of bringing an umbrella, even if we cannot theoretically prove that 
dark clouds bring about a storm. Hume called these habits “the great guide of 
human life” and thought they are formed automatically from experiences. Hence, 
although they are useful and indispensable in our everyday life, the rules that 
govern our inductive inferences are, like other habits, not something we form 
at our own will. But what if there were more than one of these guides and we 
could compare their accuracy rates? Tests are nothing but such guides or “habits” 
that govern our decisions about hypotheses on the basis of certain data (Hacking 
1980). Each guide/test has its own characteristics and decision policy: some are 
cautious and do not reject the null unless there is sufcient evidence, while 
others put greater emphasis on making new discoveries at the expense of run-
ning some risk of false positives. In the face of such a variety of guides, the 
role of testing theory is to evaluate their performance and reliability in terms 
of error rates, α and β. In this way it serves as a “guide of guides,” as it were, 
helping us to pick up the policy that best guides our decisions/actions. 

3.3.2 Classical Statistics as Externalist Epistemology 

According to Neyman, classical statistics is not about inferences but rather about 
policies for certain actions. Is this a satisfactory characterization of a statistical 
theory? That would depend on what we expect of statistical methods. The frst 
widespread acceptance of testing theory was in the American military industry 
during World War II (Shibamura 2004). To ensure the quality of military sup-
plies, the US army requested its suppliers to conduct sampling inspections and 
ship only those lots that contained fewer defective samples than a certain thresh-
old. The problem for the suppliers was how to set the threshold. Setting the 
threshold too high would result in overlooking defective lots, thus undermining 
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the trust of their customer; while if the threshold is set too stringently, the 
company would end up wasting many good lots and inficting unnecessary costs. 
The suppliers thus needed a testing method that would minimize these risks in 
the long run, and classical testing theory provided an ideal solution for this 
purpose. 

Be that as it may, statistical tests today are widely applied to scientifc inves-
tigations, whose contexts and aims difer considerably from those involved in 
the quality control of mass production. Suppose, for instance, that medical 
research has reported that a null hypothesis that a certain new drug has no efect 
was rejected at a signifcance level of 1%. What do we expect from this result? 
Certainly not the “quality assurance” of this research group, that they will pro-
duce efective drugs in the long run. Rather, we are interested in whether the 
particular drug under question is efective or not. But according to Neyman’s 
theory of inductive behavior, statistical tests do not tell us anything about the 
truth or falsity of a particular hypothesis. Does that mean that most applications 
of testing theory to scientifc investigations rest on a gross misunderstanding of 
methodology and are therefore invalid? Again, at issue here is the concept of 
justifcation. By using a statistical test, scientists aim to justify a rejection or 
acceptance of a particular scientifc hypothesis. But justifcation in what sense? 
More specifcally, if testing theory is primary concerned with the long-term 
reliability of testing methods, how and in what sense is it capable of justifying 
individual judgments resulting from its applications? In what follows, we will 
try to fll this gap, again taking philosophical epistemology as a guiding thread. 

Reliabilism 

In the previous chapter, we defned knowledge as a true justifed belief and 
introduced internalist epistemology as a strategy for justifying beliefs. Internalists 
think that a belief of an epistemic agent is justifed when it is derived via a 
valid inference from other justifed beliefs possessed by the same agent. This, 
however, is not the only method of justifcation. There is an alternative, exter-
nalist conception of justifcation. In the history of philosophical epistemology, 
the motivation for this view stemmed from a famous counterexample raised 
against the internalist concept of justifcation, called the Gettier problem (Gettier 
1963). In this short but vastly infuential paper, philosopher Edmund Gettier 
pointed out cases of apparently justifed true belief, which, however, are not 
intuitively considered as knowledge. As an example, consider the following 
(true) story, which is adapted not from Gettier’s own example but from an 
earlier discussion in Russell (1948). My ofce has a nice view of the university’s 
clock tower (so I don’t have a clock in my ofce). One day I looked at the 
clock after fnishing my morning paper work, and it was pointing exactly at 
noon, so I went to the university cafeteria for lunch as usual. It was indeed 12 
o’clock then, and students were just coming out of their classrooms after their 
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morning classes. Coming back from the cafeteria, however, I found the clock 
hands still standing straight up. In fact, the clock was under maintenance that 
day, during which its hands were fxed to the same position. Now, the question 
we want to consider is whether I knew that it was noon when I went out for 
lunch. My belief that it was noon was, as it happened, a true belief. The prob-
lem then boils down to whether it was justifed or not—but from the internalist 
perspective, my belief does seem to be justifed by my visual perception of the 
clock tower. For one thing, it is my routine practice to check the time with 
the clock tower, and there is no reason to think that my perception on that 
particular day difered signifcantly from that on other days when the clock is 
operating normally. Hence, from the internalist perspective, the belief I formed 
on that day—that it is lunchtime—is a justifed true belief, and thus qualifes 
as knowledge. I presume, however, that many of us would resist saying that I 
knew that it was lunchtime in this example. We would instead consider my 
having a true belief as a mere coincidence rather than knowledge. If so, the 
internalist defnition of justifcation does not square well with our intuitive 
understanding of the concept.11 Granted, a clash with common sense need not 
falsify a theory. Recall, however, that one of the motivations for justifying beliefs 
was to prevent “lucky guesses.” Since the case in question in the preceding 
episode is precisely such a lucky guess, the Gettier problem at least points to 
the possibility that the internalist conception fails to fulfll this important func-
tion of justifcation. 

If we deny that my belief in the clock tower story is one that is properly 
justifed, perhaps the cause can be attributed to the way the belief was obtained. 
I gained the belief that it is noon by looking at a nonworking clock, rather than 
a fully functioning one. But an unmoving clock would hardly justify a judgment 
about time, for the simple reason that it is not a reliable source of information 
about time. This line of reasoning suggests the reliabilist conception of justifca-
tion (Goldman 1975). According to reliabilism, whether a belief is justifed or 
not is determined by the nature of the process that generated the belief. If the 
belief-generating process is reliable, in the sense that it produces more truths than 
falsities, then beliefs generated by such a process are justifed. To understand this 
idea, suppose one of your friends believes that drinking three or more cups of 
cofee per day reduces the risk of stroke. Being suspicious, you ask her the source 
of that information. If she answers your question with a large-scale meta-analysis 
published in a prestigious academic journal, then you might think that her belief 
is justifed, at least much more strongly than if her source were a shady internet 
article. If so, this must be because you think that the academic journal is reliable 
and reports true information more often than a random website. Conversely, an 
unmoving clock gives us the right time only for very limited moments in a day 
and hardly counts as a reliable source of information about time. For this reason, 
the belief about lunchtime I formed on that day from such a process was, even 
though actually true, not justifed. 
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Compared with the internalism we considered in the previous chapter, the 
reliabilist concept of justifcation gives a markedly diferent answer to the philo-
sophical question: what is justifcation? For internalists, justifcation is a matter 
of a relationship among beliefs possessed by the agent, or more specifcally, 
whether a given belief is validly inferred from information accessible to the agent. 
Thus, all the factors that determine whether the belief is justifed or not must 
reside within the agent (hence the name “internalism”). For reliabilists, on the 
other hand, the key factor in justifcation is the reliability of the belief-formation 
process, which is an objective fact not necessarily recognized by the epistemic 
agent. To see this last point, imagine that most papers published in the said 
high-profle academic journal were actually complete fakes with no reproduc-
ibility, fabricated solely by the hands of its chief editor. Then, any belief obtained 
from that journal, including your friend’s belief about the benefcial efect of 
cofee, would not be justifed according to the reliabilist criterion, even if no 
one except the guilty editor knew about the misconduct. That is, for reliabilists, 
whether a belief is justifed or not is not determined by the subjective status of 
an epistemic agent, but depends in an important way on the objective situation 
holding outside the agent, such as the legitimacy of articles published in the 
journal, or the functionality of the clock. A view like this, which locates some 
of the justifcatory factors outside of the epistemic agent, is called an externalist 
epistemology. Reliabilism is a kind of externalism, in the sense that it seeks the 
basis of justifcation in the objective reliability of the belief-generating process. 

Nozick’s Tracking Theory and Hypothesis Testing 

Some questions still remain: what does it really mean to say that a certain 
epistemic process is reliable? And how do we assess this reliability? As a guide 
to answering these questions, let us refer to the view of another famous external 
epistemologist, Robert Nozick (Nozick 1981). Suppose an epistemic agent S 
believes that P. According to Nozick, an important condition that this belief 
must satisfy for it to count as knowledge is that the agent tracks the truth; that 
is, it must be the case that she comes to believe that P if P is indeed the case, 
and also that she would not believe that P otherwise. This tracking condition 
is expressed by the following pair of subjunctive conditionals: 

(N1) If P were not true, S would not believe that P. 
(N2) If P were true, S would believe that P. 

Assuming that either P or not P is the case in reality, one of these conditionals 
describes a non-actual situation and thus is counterfactual. For this reason, Nozick’s 
approach is sometimes called the counterfactual theory of knowledge, and hereafter 
we will call (N1) and (N2) counterfactual conditionals. If these two conditions 
hold, we can be assured that the agent S is forming her belief not haphazardly, 
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but well in accordance with the actual state of afairs. Note that these tracking 
conditions can solve Gettier’s problematic case shown earlier. In my clock tower 
example, I would still have believed that it was noon even if it actually weren’t, 
because I was determining time based on a nonworking clock. That is, it was 
not the case that if it were not noon I would not have believed that it was 
noon. Nozick’s proposal can thus rule out my belief on that day from counting 
as knowledge, since it fails to satisfy condition (N1). 

Although the tracking theory was originally developed apart from the context 
of reliabilism, it is possible to combine them and read Nozick’s two counter-
factual statements as conditions for a reliable epistemic process. For it should 
be quite natural to demand that a given epistemic process, for it to be reliable 
at all, must track the truth in Nozick’s sense, so that it judges that P just in the 
case that P, and not otherwise. Indeed, this seems to be exactly how we assess 
the reliability of epistemic processes, like our sensuous perceptions. Suppose, 
for example, that I am looking up at the blue sky now. I judge that the sky is 
blue on the basis of my epistemic process of vision. But if the sky were covered 
by clouds, or darkened by a solar eclipse, I would not have made that judgment. 
In this sense, my vision is a reliable epistemic process. On the other hand, sup-
pose that I hear a note of C and judge that it is C. But since, unfortunately, I 
don’t have a good ear, it is quite likely that I would have judged likewise even 
if the note I heard had been D or G. That is, my ear is not a reliable epistemic 
process (so don’t try to take me out to karaoke). 

We can summarize this discussion as follows: 

Reliabilist-Tracking Justifcation: Beliefs produced by a reliable epistemic 
process are justifed. Reliable epistemic processes are those processes that 
efectively track the truth, by satisfying the conditions (N1) and (N2). 

And then what? Well, the reason we have been discussing the externalist concept 
of justifcation so far is nothing but this: it bears out our intuition and expecta-
tion that statistical tests can be used to justify individual scientifc hypotheses. 
To see this, frst note that statistical tests that make a judgment about a hypothesis 
on the basis of data are a kind of belief-forming process. If, for instance, a 
particular test rejects the null hypothesis that a new drug is inefective, we form 
the belief that this drug is indeed efective, and the opposite belief if the test 
fails to reject the null. Testing theory measures the reliability of this process in 
terms of the confdence coefcient and power of the test. Recall that the con-
fdence coefcient of a test is the probability that it does not reject the null H

0 

when it is true, or equivalently, the probability that it can detect the falsity of 
the alternative hypothesis H

1
. Hence, if a test T has a high confdence coef-

cient, the following should hold: 

(1) If H
1 
were not true, T would not have accepted H

1
. 
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Next, the power of a test is the probability of correctly rejecting a false null 
H

0
, or equivalently, the probability of accepting the true alternative H

1
. Hence, 

for a test T with a high power, we have: 

(2) If H
1 
were true, T would have accepted H

1
. 

In a nutshell, the confdence coefcient and power can be thought as indices 
that measure the extent to which a given statistical test satisfes Nozick’s two 
counterfactual conditions of a reliable belief-forming process.12 The higher these 
indices are, the more reliably the test “tracks” the state of afairs we are interested 
in, say, the efcacy of a newly developed drug. Thanks to Neyman and Pearson’s 
testing theory, whether a given statistical test counts as a reliable belief-forming 
process in this sense can be evaluated in precise, probabilistic terms. It is in this 
reliabilist sense that a good statistical test can epistemically justify our beliefs 
and judgments about individual, specifc scientifc hypotheses, even though the 
goodness of a test is accessed in terms of long-term, frequentist criteria. 

The Counterfactual Nature of Statistical Tests 

We noted earlier the counterfactual nature of Nozick’s two conditions. What does 
this mean? As the name suggests, counterfactual conditions ask us to imagine 
a possible circumstance that is not actually realized and to consider what would 
have happened if such a circumstance had obtained. The natural question, then, 
is how to determine the truth value of such sentences that purport to describe 
a counterfactual world. That is, we need to know the truth condition of coun-
terfactual statements. Under which circumstances do Nozick’s two conditions 
(N1) and (N2) become true or false? How do we know whether these circum-
stances hold or not? 

The standard formulation of the truth conditions of counterfactual statements 
resorts to the concept of possible worlds. Possible world semantics asks us to imagine 
many possible worlds beyond the actual one in which we live. Let’s take as an 
example the counterfactual statement “If I were a bird I would fy to you” and 
see how its truth condition is treated by possible world semantics. First, we 
need to imagine a set of possible worlds; in some of them I may be a bird, in 
another I may be a crocodile, in yet another I may not even exist; in some of 
them the earth is just like ours, in another it has four satellites, and in yet 
another it has almost no air like the moon, and so forth. Among these countless 
possibilities, focus on the set of worlds in which I am a bird but which in other 
respects are quite similar to the actual world. If in all such worlds I (as a bird) 
fy to you, then the counterfactual is true; otherwise—that is, if there is even 
one possible world in which I (as a bird) do not fy to you—the counterfactual 
is deemed false. The reason we restrict our attention to those worlds that are 
similar to the actual world (except that I am a bird) is because worlds that are 
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too diferent are of little use in evaluating the counterfactual condition. For 
example, the earth in some possible worlds may be airless; then I would not 
be able to fy even if I were a bird, but such force majeure should not count as 
a breach of my pledge. On the other hand, if all the conditions are satisfed 
and yet I do not fy to you for some other reason, say, because I’m busy picking 
foods or firting with other birds, then I would need to plead guilty to the 
charge of disloyalty. Hence, in all neighboring worlds, it must be the case that 
I fy to you. The truth value of Nozick’s conditions (N1) and (N2) are to be 
assessed similarly. Taking the clock tower example again, we imagine possible 
worlds that are similar to the actual one except that P is not true, that is, worlds 
where I look up at the clock at some time other than noon, and then check 
whether I still believe that it is noon in such worlds. Since, by assumption, the 
clock is not functioning in those neighboring worlds, I would still believe that 
it is noon. We thus judge that the aforementioned counterfactual condition is 
not satisfed in this case. 

Justifcation of statistical tests has similar, counterfactual characteristics (Mayo 
2018). To begin with, a “hypothesis” in the frequentist framework is nothing 
but a statement about a possible world. In logic, a possible world is identifed 
by a combination of propositions, namely, the set of propositions that are true 
in that world. In statistics, on the other hand, a possible state of the world is 
represented by a distributional family and its parameters. Specifying the distribu-
tion by a statistical hypothesis, therefore, amounts to identifying a possible world, 
with diferent specifcations corresponding to diferent worlds. In one of these 
worlds, a phony shopkeeper is trying to rip you of with his bogus coin, while 
in another an honest dealer is ofering a genuine error coin at a bargain price. 
The purpose of a test is to determine which among these possibilities is the 
actual world in which we live. Now, suppose you collect the necessary data and 
conduct a statistical test, which successfully rejects the null hypothesis. This 
result suggests that H

1 
is true of the actual world we live in. But in order to 

justify this judgment, the counterfactual condition (N1) must hold, i.e., it must 
be the case that were H

1 
not true, the test would not have rejected H

0
. Under 

possible world semantics, this would be satisfed only if the test retains the null 
hypothesis H

0 
in all the possible worlds similar to the actual one except for the 

fact that H
1 
is false (hence H

0 
is true) there. This, however, is too stringent a 

requirement for a stochastic hypothesis, for we may obtain unfavorable data 
merely by chance. Frequentists thus consider the question: in how many worlds, 
among those possible worlds in which the test is conducted, will the null 
hypothesis H

0 
be rejected? This proportion is what we call the p-value. When 

this probability is so low that the erroneous rejection of H
0 
is sufciently rare, 

if not zero, among those possible worlds, the counterfactual condition is satisfed 
and the rejection of the hypothesis is justifed. The case of non-rejection is 
treated similarly. That is, in such a case we imagine conducting the test in the 
possible worlds where H

1 
is true and consider the probability of failing to reject 
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the null hypothesis. This gives the power of the test, or the extent to which 
the test satisfes condition (N2), on the basis of which we can evaluate to what 
extent the test’s conclusion is justifed. 

The salient feature of the counterfactual theory of justifcation is that accord-
ing to the theory, whether a conclusion is justifed depends crucially on neigh-
boring possible worlds. In other words, whether a belief or judgment is justifed 
or not cannot be determined solely by looking at the actual world. According 
to Nozick, whether an agent S’s belief P is justifed or not depends on coun-
terfactual situations as to what S would have believed in the worlds where 
not-P. Likewise, whether a test T’s rejection of the null hypothesis is justifed 
or not depends on the counterfactual consideration of how frequently T would 
have rejected H

0 
among all the non-H

1 
possible worlds. Some may fnd it odd 

that the structure of possible worlds determines whether or not our belief or 
judgment in the actual world is justifed, especially given that these diferent 
worlds are in principle utterly inaccessible and unknowable to us. There seems 
to be no way to actually check what I would do if I were to become a bird. 
Statistical tests make this apparent impossibility possible by introducing a theo-
retical structure into possible worlds. That is, it assumes that these possible worlds 
share the same statistical model (probabilistic kind) with the actual world, dif-
fering only in its parameters. This allows us to calculate the probabilities of 
hypothetical samples that should obtain in each of these worlds. We can then 
estimate the rate of rejection and retainment of a hypothesis among the possible 
worlds and determine whether the desired counterfactual conditions are satisfed 
or not. From this, one may say that frequentist statistics is a kind of statistics 
that probes the structure not of the actual world, but of possible worlds. Later, 
we will see that this counterfactual character takes on an essential signifcance 
in understanding the controversy between Bayesianism and frequentism. 

3.3.3 Epistemic Problems of Frequentism 

The Truth-Conduciveness of Statistical Tests 

Recall that at the end of the previous chapter, having characterized Bayesianism 
as an internalist epistemology, we asked whether its concept of justifcation really 
possesses the property of truth-conduciveness that we expect of it, and if so, 
under what conditions. This problem stems from the coherentist nature of the 
Bayesian/internalist concept of justifcation: that is, if Bayesian justifcation is 
all about the logical coherence among beliefs possessed by an epistemic agent, 
it would need an additional account as to why these subjective beliefs could 
also be true, in the sense that they accord with objective facts. Does the same 
issue arise for frequentism qua externalist epistemology? That is, can we reason-
ably expect that a belief about a hypothesis justifed by a reliable statistical test 
is actually true? From the reliabilist defnition of justifcation we saw earlier, 
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the answer seems to be yes. For reliabilists, to say that a belief is justifed means 
nothing but that it was generated by a process that regularly produces beliefs in 
such a way that they accord with external facts. Hence the reliabilist concept 
of justifcation must be truth-conducive, trivially by defnition. 

Does this mean, then, that we can uncritically trust the results of a test with 
a high confdence coefcient and power? Indeed, it is common practice in 
scientifc applications of statistical tests to take a low p-value as a straightforward 
statistical proof of the alternative hypothesis. Such an uncritical reliance on 
statistical signifcance in evaluating scientifc hypotheses, however, has increas-
ingly been viewed with suspicion, especially after the recent statement on the 
misuses of the p-value issued by the American Statistical Association (Wasserstein 
and Lazar 2016). The statement warns that the p-value, along with the underly-
ing statistical theory and methods, is often misused or misinterpreted in the 
scientifc community (the so-called p-value problem), leading to poor and unwar-
ranted decision-making. Publications of research based on fawed statistical 
inferences often fail to replicate in subsequent experiments, giving rise to what 
is known as the reproducibility crisis. The suspicion has extended to the method-
ology itself, to the point that some scientifc journals go so far as to ban the 
use of the p-value altogether. 

Viewed through a philosophical lens, this recent revolt against testing theory 
has a striking similarity with a standard criticism made against externalist epis-
temology by the rival internalists. As mentioned previously, externalists do not 
require that an agent knows that the epistemic process she uses in forming her 
belief is reliable; it sufces that the process is reliable as a matter of fact, regard-
less of whether this fact is recognized by the agent. Internalists complain that 
this is too irresponsible and leads to several unintuitive consequences (Bonjour 
1980). In particular, they claim that the externalist criterion ends up granting 
knowledge status to beliefs formed by an overtly unscientifc, spooky method 
such as clairvoyance, as long as the method is reliable for some unknown reason, 
unintelligible even to the belief-forming agent. This problem indicates that an 
externalist knower, lacking a proper understanding of the process she uses, can-
not rule out the possibility that the well-functioning of a supposedly reliable 
process is a sheer matter of luck. But if so, it fails to satisfy the very motivation 
of justifying beliefs, namely, to distinguish knowledge from mere “lucky guesses” 
(Chapter 2). 

The question at stake in these two criticisms, one in statistics and the other 
in philosophy, is: to what extent, if at all, should one be responsible for the 
epistemic process one uses to acquire knowledge? In the eyes of internalists, 
externalists appear to abandon this responsibility altogether, and along with it 
the very essence of justifcation. Likewise, the ASA statement puts the blame 
on the thoughtless application of statistical tests unaccompanied by a proper 
understanding of the method or an inspection of their reliability, and claims 
that such irresponsible inferences fall far short of scientifc justifcation. Classical 
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statistics indeed has well-established testing protocols, but if one takes the reli-
ability of tests as a given and pays little attention to why they can be trusted 
in the frst place, don’t they become something like mystical oracles? 

Facing this challenge, one can think of two responses. One is to push exter-
nalist epistemology to its extreme and abdicate the responsibility of having a 
frm grip on the epistemological process one uses. This is roughly the strategy 
taken by some pragmatist-minded epistemologists such as Stich (1990), and in 
the next chapter, we will fnd its statistical counterpart in the recent develop-
ment of deep learning, where increasingly greater emphasis is put on improving 
the performance of algorithms than on providing a theoretical warrant of their 
reliability. 

The other, more moderate response takes the epistemic responsibility seri-
ously and acknowledges the burden on the part of an epistemic agent to check 
the truth-conduciveness of the method in use. Such a stance would not take 
the reported outcome of a test for granted, but would require a second-order 
justifcation for the reliability of the decision process. From an epistemological 
perspective, this is tantamount to “internalizing” some external justifcatory 
factors, thereby mitigating the externalist nature of classical statistics (Staley and 
Cobb 2011; Mayo 2018). 

One concrete strategy along the second line is to verify or justify the assump-
tions underlying the testing setup. Statistical tests draw their appeal from the 
reliability of the epistemic process, which is supposedly measured by the p-value 
or power. The validity of these indices, however, depends on various implicit 
as well as explicit assumptions, most notably those concerning the likelihood 
function used to derive these indices. For instance, the construction and inter-
pretation of the tests in our coin example rest entirely upon the distributional 
assumption, which remains untested over the course of the experiments. Fed 
with data, a statistical test issues a rejection or retainment of the null hypothesis, 
but it does not say anything about the validity of the test’s assumptions, such 
as that 10 coin tosses can be represented by a binomial distribution, or that the 
probability of heads is either 0.25 or 0.75, and not any other value. Granted, 
coin tossing is an easy toy example with little room for doubt. But in other 
general cases, the question as to which probabilistic kind best represents the 
phenomenon of interest, or whether the target phenomenon can be represented 
by any defnite probabilistic kind at all (that is, whether it really forms a well-
behaved “natural kind”), poses a real empirical question whose answer cannot 
be taken for granted. Identifying an appropriate probabilistic kind and ensuring 
that the test setup actually conforms to that specifcation constitute an essential 
part of testing practice (at least parametric ones), upon which the validity of 
reliability measures like confdence coefcient and power crucially hinges. For 
this reason, a low p-value cannot be taken as a foolproof justifcation of a test’s 
verdicts. We also need to ascertain whether the test itself is a properly function-
ing cognitive process, and satisfes the counterfactual tracking conditions we saw 
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earlier. Proving this requires not just simply reporting a couple of indices pro-
duced by statistical software, but a critical scrutiny of the various assumptions 
that underlie these fgures. 

The preceding discussion concerned the condition under which a statistical 
test functions as a reliable belief-formation process. The reproducibility problem 
has an additional aspect, namely whether such processes are properly employed 
in scientifc research. Any tool, if not used correctly, will not produce its intended 
efect. Likewise, improperly conducted statistical tests will not be able to justify 
hypotheses. Let us illustrate an inappropriate use of a statistical test with our 
familiar coin-tossing example. This time, imagine that the seller, instead of let-
ting you throw the coin, only tells you that he tossed the coin ten times at his 
home and was able to reject the null hypothesis that this coin is not an error 
coin at the 5% signifcance level. Taking his words to be true, should you buy 
the coin? It all depends on how many times the seller conducted this experi-
ment. It might indeed be true that he was able to reject the null hypothesis by 
tossing this coin. But it might also be the case that he conducted similar experi-
ments with a lot of other coins he has at home. Then, even if these coins were 
all common ordinary coins, he could have rejected the null hypothesis with the 
probability of 5%—that is, 1 out of 20 coins—just by sheer chance. It may be 
the case that he simply picked out a coin that passed the test by plain luck, 
sweeping all the other unsuccessful coins under the carpet. 

This kind of multiple testing can also be problematic in a scientifc context. 
Imagine that a research laboratory tested the toxicity of 100 diferent chemical 
compounds and found that with 3 of them, labeled A, B, and C, the null 
hypothesis of being nontoxic was rejected at the signifcance level of 5%. But 
if the lab, based on this result, were to report the toxic risk of A, B, and C 
without mentioning the test results of the other 97 compounds, they would be 
committing the same deceit as the coin seller earlier. This deceit takes advantage 
of the stochastic nature of testing processes, namely, the fact that its reliability 
is guaranteed only probabilistically, so that repeated application of the test will 
produce a certain amount of false positives and negatives. “Hacking” a testing 
process in this way in to order to derive a desired conclusion is called 
p-hacking. 

These considerations prompt us to rethink the externalist nature of frequentist 
epistemology. The externalist justifcation essentially relies on the processes or 
circumstances external to an epistemic agent. In my feld of vision there now 
appears a blue sky through the window, which justifes my belief that it’s a 
beautiful day today—or at least, so I think. The success or failure of this justi-
fcation, however, depends on numerous external circumstances and conditions 
that have an infuence on the functionality of my visual perception, such as that 
I don’t have cyanopsia, or that there is no blue flm on the window. These 
conditions are external to my visual process, and as such, they cannot be veri-
fed solely on the basis of the image it produces. Only when these external 
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conditions are independently checked by other means can the justifcation by 
the cognitive process be guaranteed to be reliable, i.e., truth-conducive. Likewise, 
the externalist nature of frequentist justifcation implies that its truth-condu-
civeness is inherently dependent on the conditions external to the testing process. 
Testing theory formulates such external conditions through its assumptions on 
experimental design, the uniformity of nature (IID), probabilistic kinds (statistical 
models and likelihoods), and so on. However, whether or not these assumptions 
actually hold is ultimately “external” to statistical theory and eludes complete 
confrmation. At least, it is not something that can be read of from the results 
of the testing process. If that is the case, then judging the success or failure of 
a hypothesis solely on the basis of the test result or p-value is fundamentally 
misguided in light of the frequentist concept of justifcation. What really matters 
in the justifcation of a hypothesis in testing theory is the reliability of the 
process that produces it, not the particular result. The success or failure of the 
conditions that support this reliability is usually hidden from us, and is not 
something that can be confrmed by simple indicators. But in order for the 
externalist justifcation to be truth-conducive, we must take responsibility for 
these hidden external conditions and pay constant attention to their validity. 

The Likelihood Principle 

Attending to the epistemological nature of frequentist statistics also helps us 
understand the debate over the likelihood principle, a substantial theoretical 
criticism often leveled against frequentism by other statistical schools, such as 
Bayesianism. Briefy put, the likelihood principle is the claim that all information 
that matters to the inference of hypotheses and parameters is contained in the 
likelihood function for the observed data (Berger and Wolpert 1988). In other 
words, the principle states that the inferential implications that the data at hand 
have for a hypothesis depend only on the probability of obtaining that data under 
that hypothesis, and not on any other information. Hence, if two hypotheses 
have the same likelihood with respect to the observed data (or, more precisely, 
if they are proportional to each other by a constant factor), then the data should 
not give a preference between the two hypotheses. Conversely, if a hypothesis 
has the same likelihood under two diferent datasets, then these datasets should 
provide the same amount of evidential support for the hypothesis. 

The standard Bayesian inference satisfes this principle, because by Bayes’ 
theorem, the posterior probability P(H|E) depends on the data only through 
the likelihood P(E|H), provided that the same prior is used. For this reason, 
Bayesians adopt the likelihood principle as a fundamental principle that must 
be satisfed in any statistical inference. 

On the other hand, the likelihood does not have the fnal say in frequentist 
inference. This is evident from the experiment discussed in Section 3.2.4, where 
a coin was tossed 20 times to determine if the null hypothesis H

0
: θ = 0.25 
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could be rejected. Recall that the critical region in this experiment is X ≥ 9 if 
the signifcance level is to be set to 5% or lower. Hence, if the coin comes up 
heads 9 out of 20 times, we reject the null hypothesis H

0 
and take it as evidence 

for the alternative hypothesis H
1
: θ = 0.75. But getting nine heads means that 

we had more tails; and this result by itself is more likely to be observed under 
the null hypothesis that the coin is biased toward tails than under the alternative 
hypothesis that it is biased toward heads, namely P(X = 9;H

0
) > P(X = 9;H

1
).13 

Hence, if we focus only on the likelihood, the observed data seem to lend more 
support for the retainment of the null hypothesis than for its rejection. In fact, 
under the Bayesian framework, the posterior probabilities become P(H

0
|X = 

9) > P(H
1
|X = 9), provided that both hypotheses start with the same prior, so 

that the null hypothesis is more strongly confrmed. Statistical tests, in contrast, 
may reject the null hypothesis even if it has a higher likelihood than the alter-
native hypothesis, and this means that frequentist inference is infuenced by 
information other than the likelihood. 

In efect, frequentism does not satisfy the likelihood principle, and it has 
often been criticized by Bayesians and others in this regard. One of the “para-
doxes” of frequentism that arises from its noncompliance to the likelihood 
principle is the stopping rule problem (Lindley and Phillips 1976; Howson and 
Urbach 2006; Sober 2008). This is a problem in which exactly the same data 
lead to conficting conclusions in diferent experimental designs: rejection of 
the null hypothesis in one case and retainment in the other. We assumed previ-
ously that H

0
: θ = 0.25 and examined whether this could be rejected in a 

20-coin-tossing experiment. Here, to ft the argument in Howson and Urbach 
(2006), let us take as the null hypothesis H

0
: θ = 0.5 and consider an experi-

ment to see if the coin is unbiased. We take as the alternative hypothesis H
1
: 

θ = 0.25; that is, we assume that the coin is either fair or skewed to tails. In 
this case, it would be reasonable to reject the null hypothesis if the coin lands 
on heads signifcantly few times in 20 tosses. The plot on the left side of Fig-
ure  3.4 shows the probabilities of observing each number of heads when we 
toss a fair coin 20 times. Suppose we now perform this experiment and get 6 
heads. Given that the probability of getting 6 or fewer heads under the null 
hypothesis is P(X ≤ 6;H

0
) = 0.0577, this result cannot reject the null (fair coin) 

hypothesis with the 5% signifcance level. However, this is not the only way to 
test the coin’s bias. We can consider an alternative experimental design, where 
we keep tossing the coin until we observe 6 heads, at which point the experi-
ment ends. This experiment is expected to drag on if the alternative hypothesis 
H

1
: θ = 0.25 is correct, but it will terminate relatively early if the null hypothesis 

H
0 
is correct. We can thus denote by Y the total number of tosses it takes to 

get 6 heads (so naturally, Y ≥ 6), and agree to reject the null if this value is 
greater than a certain value. This experiment looks a little complicated, but 
there is no logical faw in it. That this experiment ends at the yth toss means 
that we get 5 heads (and y − 1 − 5 tails) by the y − 1-th toss and then another 
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head again in the yth toss. Assuming the null hypothesis H
0
: θ = 0.5, the prob-

ability that this happens is 

5 y˝6P Y ˜ y H; 0 ˛ ˜ y˝1C5 0 5  0 5  0 5° ( . ) ( . ) ( . )  

where y ≥ 6. The right fgure in Figure 3.4 shows this probability, with the 
horizontal axis representing the number of times y that the coin was tossed 
until the end of the experiment. From this fgure, we can calculate the type I 
error. Since we have decided to reject the null hypothesis when the number of 
tosses is above a certain threshold y′, the probability of making a wrong decision 
is the sum of all the probability values above y′ in this fgure. Now we are 
assuming that we get 6 heads out of 20 tosses: hence, adding the probability 
values for 20 and more tosses, we obtain 0.0318, which is less than 0.05. 
Therefore, under this experimental design we can reject the null hypothesis at 
the 5% signifcance level. 

Throughout this discussion, we have just one dataset: 20 tosses of a coin, 
out of which 6 are heads. This same data is seen as a basis for retaining the 
null hypothesis in one design, and rejecting it in the other. This, in the eyes 
of Bayesians, appears to reveal the arbitrariness and inconsistency of testing 
theory, as it shows that the result of the statistical analysis hinges on the scientist’s 
choice of experimental design. Suppose, for example, that a researcher performs 
the same experiment with the intention of tossing a coin 20 times, and gets 6 
heads as a result. Seeing that this result cannot reject the null hypothesis, she 
might conceal her original intention and pretend that she was actually conduct-
ing the experiment under the fexible design. She is then able to reject the null 
and justify the alternative hypothesis that the coin is not fair. Tying the fate of 
a hypothesis to the experimenter’s whim like this should strike one as utterly 
absurd and inappropriate. In contrast, such a problem does not arise in Bayesian 
inference, whose posterior distribution is unafected by the choice of stopping 
rules and depends only on the observed result; for this reason, Bayesians have 
argued that their method is less subjective in this regard (Howson and Urbach 
2006, pp. 160, 248–250). 

At frst glance, this stopping rule problem may appear to be an artifcial trick 
that exploits a “bug” in testing theory. But a closer look reveals that it in efect 
points to a philosophical difculty that haunts any reliabilist epistemology, called 
the generality problem. Reliabilists seek the source of justifcation in the process 
that produces beliefs. A given process, however, can be described at various 
levels of granularity and detail. For example, imagine that someone takes a pill 
and tells you that the pill is tasteless. You may take her judgment to be gener-
ated by “the gustatory process of a human with no taste disorder,” which should 
be reliable to some extent. If, however, she happens to have just eaten a very 
hot curry, this process is also “the gustatory process of a human with no taste 
disorder after having eaten a stimulant,” which does not sound very 
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reliable. Alternatively, you could take a very broad view and think of the process 
as “the process by which a multicellular organism recognizes an external sub-
stance through its stimulus receptor cells,” in which case you would certainly 
not regard it as a reliable indicator of taste. In this way, the same event can be 
described as the result of many (not numerically, but descriptively) diferent 
“processes.” The reliability of which among these processes, then, should be 
taken as the standard in justifying a given belief? This is the generality problem 
(Conee and Feldman 1998). Simply increasing the granularity of the process is 
no solution, for that will eventually leave us with the most specifc description 
applicable only to the single instance at hand, thereby making it impossible to 
estimate its reliability or to express it in terms of frequentist probability (see 
Section 3.1). The reader might note that this problem is similar to the reference 
class problem we encountered in Section 2.3.3. The problem is a genuine one 
with no universally accepted solution, and thus it has been considered a major 
challenge to reliabilism. 

Regarding a statistical test as a cognitive process, we see that the stopping 
rule problem is none other than a version of this general epistemological prob-
lem. An important moral of the generality problem is that one and the same 
experiment may be described as diferent statistical tests that give rise to con-
ficting conclusions, and one cannot determine which among them should be 
used just by looking from the outside. The previous example can be described 
either as a process of tossing a coin 20 times, or that of tossing it until one gets 
6 heads. Depending on the description we take, the belief that the coin is biased 
may or may not be justifed, and there is no principled way to decide which 
process is the one actually being used. But how, then, can testing theory serve 
to justify any hypothesis? 

One frequentist response to this challenge is to bite the bullet and fully 
acknowledge the indeterminacy of processes, while stressing that it is actually 
a virtue of their theory that it recognizes this indeterminacy. Mayo (1996), 
for instance, emphasizes that data should always be interpreted in accordance 
with the experimental design; hence, on her view, the blame is on the side 
of the Bayesians who ignore this dependency and pretend as if a hypothesis 
can be accepted or rejected based just on the data. This response makes sense 
in light of the reliabilist nature of frequentism. If a statistical test is a sort of 
cognitive process for drawing conclusions from data, there should be no 
contradiction in there being multiple such processes which come to confict-
ing conclusions in the face of the same data. What is important is that the 
experimenter, recognizing this fact, makes it explicit which process he or she 
uses in the experiment and strictly follows that decision. The aforementioned 
case of switching from the originally planned design to the alternative upon 
looking at the data violates this rule and is hence prohibited. At fault here 
is not so much the testing methodology itself as the deviation from its pro-
tocol, which requires the experimenter to prespecify the cognitive process 
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or method she will use during the experiment. The prior specifcation is 
necessary because the frequentist justifcation of hypotheses inherently relies 
on the reliability of the process, so that its decision of rejection or retainment 
is justifed only insofar as it comes from the correct application of a reliable 
cognitive process. From this perspective, using a testing method that allows 
one to draw a desired conclusion come what may hardly counts as reliable, 
for it would not track the truth in Nozick’s sense. At any rate, the reliability 
of such an opportunistic “process,” if even it can be estimated at all, falls far 
short of that indicated by the confdence coefcient and power of the indi-
vidual testing processes. Such a practice is thus a “hacking” of the testing 
process, just like the multiple testing discussed earlier, for it amounts to 
presenting the reliability measure of a testing process which in fact was not 
used in the actual experiment. 

It is not just the data, but rather the process used to derive the conclusion 
that matters in the frequentist justifcation. This implies a sort of relativism, to 
the efect that any conclusion of rejection or retention of the null hypothesis 
is justifed only in light of a particular experimental design and other testing 
conditions, and not unconditionally. A conclusion justifed by one process may 
not be so by another—to embrace the generality problem is to admit that there 
is no unique, ultimate justifcation that would clear up all such relativism. It 
follows that scientifc conclusions reached through statistical tests can be justifed 
only relative to the method used. This does not necessarily mean “anything 
goes,” since we can explicitly assess the reliability of each testing process with 
the aid of testing theory. Doing so, however, requires more than a superfcial 
look at the result or p-value of a statistical test: it demands a careful consideration 
of the overall experimental design and testing method, including the experi-
menter’s intentions. 

What lies underneath the diference between frequentist and Bayesian attitudes 
toward the likelihood principle is a diference in their epistemology. For Bayes-
ians and internal epistemologists, data are the sole foundation upon which our 
empirical reasoning stands, the epistemological “given,” and must contain every-
thing we will ever be able to know about the world. If so, everything that can 
be inferred about a statistical model must be summarized in the likelihood, i.e., 
the probability of obtaining the data under that model. For externalism, on the 
other hand, data do not mean everything. What matters is rather the external 
circumstances in and with which the data were obtained, as well as the reliability 
of this acquisition process. Drawing on Nozick’s argument, we characterized 
this reliability in terms of two counterfactual conditions and mapped each to 
the confdence coefcient and power of a statistical test. This means that the 
frequentist justifcation process attaches weight not only to the actual data, but 
also to the “counterfactual data,” so to speak; namely, the data that were not 
actually observed but could have been observed. This is because to consider 
what the test would conclude should the null hypothesis be true or false amounts 
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to contemplating what kind of data would be obtained in a world that is (pos-
sibly) diferent from the actual one. Such counterfactual information is obviously 
not revealed by observation, and for this reason frequentists resist the likelihood 
principle, which demands that we ground all our inferences on the actually 
observed data.14 

3.3.4 Summary: Beyond the Bayesian vs. Frequentist War 

In this chapter we examined the frequentist methodology and its problems from 
an epistemological perspective, with a particular focus on the theory of statistical 
testing. Unlike Bayesianism/internalism, which locates the justifcation of proba-
bilistic inferences in the logical consistency among beliefs, frequentism/external-
ism seeks the basis of justifcation in the reliability of the inferential process, of 
which statistical tests are a kind. The challenge for frequentist epistemology, 
then, becomes how to ensure the reliability of such external processes. As we 
have seen throughout this chapter, classical statistics helps us to assess the reli-
ability of inferential processes on the basis of assumptions about probabilistic 
kinds and experimental design. These assumptions, however, stand “external” 
to the inferential process, and there is no principled way to evaluate their validity 
from the data in a systematic fashion. 

Bayesians with an internalist slant will see a serious problem here. In their 
eyes, the assumption of a probabilistic kind is no more than a belief or “doxa” 
that an agent projects onto the phenomenon under study. If so, there should 
be a certain qualifcation on such beliefs, and this qualifcation should be refected 
in the subsequent statistical analysis in the form of prior probability. Indeed, by 
admitting prior probabilities of hypotheses, Bayesians seem to take a more cau-
tious and fexible attitude toward the assumption of probabilistic kinds. This is 
thanks to the fact that Bayesian statistics reduces all uncertainties to internal 
“degrees of beliefs” and treats them uniformly under the principle of Bayes’ 
theorem. 

Frequentists, on their side, retort that Bayesians’ obsession with this kind of 
uniform treatment makes them overlook important factors in inference. They 
emphasize that inference should depend not only on the assumption of a proba-
bilistic kind but also on a myriad of external factors, such as experimental design 
and stopping rules, which cannot be summarized by or reduced to just the 
likelihood and prior probability. It is thus the Bayesians who, clinging to the 
likelihood principle, turn their eyes away from essential factors in inductive 
inference, or so the frequentists argue. 

The purpose of this book is neither to settle this dispute nor to add fuel 
to it. What, then, is the point of pondering about these “isms”? The main 
reason we have to pay attention to these philosophical foundations is that 
inductive reasoning, by its nature, involves muddy uncertainties not amenable 
to clearcut logical or mathematical treatment. The crux of inductive 
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reasoning lies in inferring what we don’t know from what we do know; but 
making such nondeductive inferences in a logically valid way is essentially 
impossible, as Hume had already perceived in the 18th century. The “Humean 
predicament is the human predicament,” Quine once remarked, and this is 
still so even with today’s mathematically sophisticated statistical theory. In 
order to fll the inevitable logical gap between the premises and conclusions 
of inductive reasoning, inferential statistics introduces certain ontological posits 
such as uniformity and probabilistic kinds, and explores their nature with the 
lead of the given evidence. The lead is only partial and indirect, for these 
entities transcend experience and elude direct access. This inevitably raises 
the epistemological question as to how and in what sense statistical inferences 
to inherently unobservable entities can be justifed. The previous and current 
chapters tackled this question by focusing on two kinds of concepts of jus-
tifcation, internalist and externalist, and by connecting them to Bayesian and 
frequentist statistics, respectively. Our analysis, if successful, revealed that the 
two camps difer not just in their methodology but also at a deeper conceptual 
level, namely, regarding what it means for a hypothesis to be justifed by 
statistical analysis at all. If so, we cannot argue which is better without look-
ing at this fundamental diference. From this perspective, the oft-raised issues 
concerning the arbitrariness of prior distributions or violation of the likeli-
hood principle are only surface symptoms of the deeper conceptual division, 
like two foating icebergs colliding at their tips. In order to fully appreciate 
the motivation of the mutual criticisms and move the discussion in a con-
structive direction, we need to direct our gaze to the submerged philosophical 
ideas. 

Throughout this book we have characterized inferential statistics as a means 
for justifying scientifc hypotheses, and emphasized that to fulfll this role it must 
be truth-conducive—i.e., there must be a reason to believe that its conclusions 
put us on the right track to uncovering the target phenomenon. This original 
motivation of statistical analysis, however, sometimes falls into the background 
in practice. This is particularly true when one feeds collected data into a pack-
aged software to obtain a one-click statistical solution without questioning its 
theoretical underpinnings. Conclusions from such a “recipe-like statistics” (Mayo 
2018) hardly provide bona fde, truth-conducive justifcations. Calculating pos-
terior distributions or obtaining low p-values, by themselves, do not tell us 
anything about the target phenomena. Bringing such results into the service of 
inference-making about the real world requires more than following a routine 
protocol and internal logic of a given statistical method; it further demands that 
we check whether the justifcatory procedure in use is actually truth-conducive. 
What, then, makes statistical methods truth-conducive? In the current and 
previous chapters, we attempted to draw an answer to these questions from 
their respective epistemological natures and point to conditions the methods 
must satisfy in order to fulfll their original motivation. 



 

 

 

 1.  Recall that we defned H = 1 as the inverse image of a random variable H, i.e., as  
the subset {ω  ∈ Ω : H(ω) = 1} of Ω. 

 2.  However, this argument does not straightforwardly carry over to complete or σ-additivity,  
i.e., cases in which there are infnitely many terms. In fact, relative frequency by itself  
is not countably additive. See van Fraassen (1977) and Gillies (2000) for details. 
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Of course, philosophical refection is not a silver bullet. It does not fll the 
logical lacuna in inductive reasoning, nor can one epistemological standpoint, 
either internalism or externalism, ofer a complete picture of statistical justifca-
tion. In the previous chapter we asked how Bayesian epistemology, which focuses 
primarily on the logical coherence of beliefs, can ensure correspondence with 
external facts; and we suggested that to overcome this difculty, one must step 
out of the internalist framework. In this chapter, we took up the p-value problem 
and the reproducibility crisis as problems raised against frequentism and argued 
that these problems highlight the need to take responsibility of the truth-con-
duciveness of the statistical testing process. This requires frequentists to step back 
from pure externalism and to some extent “internalize” its justifcatory machinery. 
The moral we should draw from these apparently unrelated problems is that 
any statistical method, either Bayesian or frequentist, cannot be content with 
staying within just one epistemological framework. Epistemology does not 
vindicate any particular statistical method or the concept of justifcation used 
therein. If anything, it is unlikely that epistemologists will ever agree on what 
concept of justifcation is the “correct” one, or even that the question has a 
defnitive answer. Even so, this meta-statistical question is unavoidable, given 
that we have to rely on some justifcatory concept or another if we are to justify 
a scientifc hypothesis using a statistical method. The least we can do, then, is 
to be aware of the conceptual framework we adopt in our reasoning. Philo-
sophical analysis sheds light on these ideological backgrounds and conundrums 
that are often forgotten in the practice of statistical methods, and provides a 
meta-perspective for comparing diferent methods and understanding the debates 
that take place between them. 

Further Reading 

For philosophical expositions of the frequentist interpretation of probability, see 
the aforementioned Gillies (2000), Childers (2013), and Rowbottom (2015). 
The basics of statistical testing are covered by almost any statistics textbook, 
including Vaughan (2013) and Wasserman (2004) mentioned in Chapter 1. Gil-
lard (2020) also gives a succinct account. Deborah Mayo (1996, 2018) is a 
leading advocate of the frequentist philosophy. Externalist epistemology, along 
with Nozick’s tracking theory, is briefy discussed in Nagel (2014). 

Notes 
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3. “The phrase ‘probability of death’, when it refers to a single person, has no meaning 
at all for us” (von Mises 1928). Dissatisfed by this conclusion, some, including most 
notably Karl Popper, proposed that a single-case probability can be defned as its 
propensity on the basis of a long-term frequency. For more details, see Gillies (2000) 
and Suárez (2020). 

4. Granted, a probability function, as a mathematical measure, assigns a value to each 
individual element of the sample space. Such an assignment, however, is only a 
mathematical construct which by itself does not have any realistic/objective meaning 
in frequentism. A probability value has a counterpart in the actual world only in light 
of a certain probability distribution and collective. In this respect, one may say that 
in the frequentist interpretation, probability functions are ontologically prior but 
semantically posterior to probability distributions. 

5. As we saw in the discussion of the base rate fallacy, even in the subjectivist framework 
one cannot conclude that the hypothesis is improbable. 

6. In this book we deal only with the most elementary kind of test, namely, a test 
between two simple hypotheses H

0 
and H

1
, each denoting a specifc distribution or 

parameter. A hypothesis is called composite when it ranges over multiple distributions 
or parameters (as when one tests whether the mean is zero or not, in which case the 
alternative H

1 
consists of infnitely many parameter hypotheses {µ|µ ≠ 0}). 

7. In Bayesian statistics, the likelihood is the conditional probability P(X = x|H
0
) given 

the hypothesis. But, for the reasons discussed in the previous section, in the frequentist 
framework the hypotheses H

0
, H

1 
are neither random variables nor values thereof, 

which means that we cannot condition probabilities on them. For frequentists, 
hypotheses are expressed by their respective probability distributions, and thus, to be 
precise, the notation P(X = x;H

0
) stands for “the distribution of X resulting from the 

probability function P  indexed by H .”
H0 0 

8. Note, however, that even in Bayesian statistics, what we can calculate is a degree of 
belief in a hypothesis, and not the probability of that hypothesis being true, whatever that 
may be. 

9. “As far as a particular hypothesis is concerned, no test based upon the theory of 
probability can by itself provide any valuable evidence of the truth or falsehood of 
that hypothesis” (Neyman and Pearson 1933, p. 291). 

10. In efect, the result of a given test is a function of the data understood as random 
variables, and is thus itself a binary random variable which has its own probability 
distribution. Signifcance level (or confdence coefcient) and power are parameters 
of this distribution. If the distribution of the original data is to be interpreted in 
terms of frequentist probability, so must these parameters. 

11. Another response would be to keep the internalist concept of justifcation and take 
the Gettier case as a counterexample to the traditional defnition of knowledge as a 
true justifed belief. Although it is popular to interpret the Gettier problem in this 
way, in this book we keep the traditional defnition of knowledge as unquestioned 
and focus on the concept of justifcation. 

12. This connection has been mentioned briefy by Nozick himself (Nozick 1981, p. 260). 
More recently, Roush (2005) has ofered a Bayesian interpretation of the tracking 
theory. In my view, however, the counterfactual nature of the tracking theory is best 
captured by classical, rather than Bayesian, statistics. 

13. As a matter of fact, we have P(X = 9;H
0
) ≈ 0.027 and P(X = 9;H

1
) ≈ 0.003, with 

the former being about one order of magnitude larger. 
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14. It is known that the likelihood principle is equivalent to a conjunction of two other 
principles: the principle of sufciency, according to which statistical inferences are 
fully determined by sufcient statistics, which summarize the whole data; and the 
principle of conditionality, which states that inferences should be based only on 
experiments that were actually done, and not on possible experiments that could have 
been performed but were not in reality (Birnbaum 1962). The discussion here sug-
gests that frequentists, by resorting to counterfactual information, do not accept the 
principle of conditionality. 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

 

4 
MODEL SELECTION AND 
MACHINE LEARNING 

In the previous two chapters, we considered how traditional statistics—both 
Bayesian and classical—has dealt with the problem of induction. In order to 
predict the future from the past, one has to assume what Hume called the 
“uniformity of nature” that remains invariant across time. In inferential statistics, 
this uniformity is represented by a probability model and is estimated from 
observed data. The estimated model then allows us to indirectly predict future 
samples, which we suppose are generated from the same model (see Figure 
1.2). On this picture, one may naturally be led to expect that a better and 
more precise determination of the underlying uniformity or probability model 
should allow for better predictions and inferences. Indeed, this was one of 
our motivations for our exposition in the previous two chapters on Bayesian 
and classical statistics as empirical methods for identifying a probability model 
qua model of reality. This presumption, however, may be questioned. For the 
purpose of prediction, is it always a good idea to strive to delineate the data-
generating process as accurately as possible? Isn’t it possible that statistical 
models that are not so faithful to nature are able to make better predictions? 
Surprisingly, the answer is yes. It is not always the case that precise models 
make better predictions; sometimes models that “distort” reality a bit fare 
better. In this chapter, we will see this through two cases, model selection 
and deep learning. 

4.1 The Maximum Likelihood Method and Model Fitting 

Before diving in, let us warm up and familiarize ourselves with the notion of 
model ftting and its representative technique, the method of maximum likelihood, 
which will appear frequently in this chapter. The “models” we will discuss here 
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are nothing but statistical models, or what we dubbed “probabilistic kinds” in 
Chapter 1. They are, recall, hypotheses about distributions of given random 
variables, represented by a distributional family with a (set of ) parameter(s). We 
have seen, for instance, that the number X of heads in 10 coin tosses can be 
modeled by the binomial distribution P(X; θ), with the parameter θ represent-
ing the probability of heads. As in the previous chapter, the semicolon (“;”) 
conveys the idea that the distribution of X is determined by the parameter θ. 
(See also note 7 of Chapter 3. In the Bayesian framework, P(X; θ) can be read 
as a simple conditional probability, P(X|θ)). 

If we were to follow the lead of the previous two chapters, we would then 
proceed to estimate these parameters, and for this purpose we would need to 
make some hypotheses about their values. Bayesians would calculate a posterior 
distribution from an assumed prior distribution of θ, while frequentists would 
make a particular hypothesis (i.e., null hypothesis) about the value of θ and test 
its validity. But here let us take a diferent approach and simply consider ftting 
the parameters to the data at hand, without going into the business of confr-
mation. That is, we set aside the question of what the real probability model 
looks like, and instead ask for a set of parameter values that would best “predict” 
the observed data.1 In other words, our goal here is to fnd the parameter values 
that maximize the model’s likelihood, i.e., the probability of obtaining the data 
under a given probabilistic kind. 

So let’s try it. Suppose that you fip a coin and get 6 heads out of 10 tosses 
(X = 6). Which among the possible parameter values 0 ≤ θ ≤ 1 makes this 
outcome most likely, or in other words, maximizes the likelihood P(X = 6; θ)? 
From the binomial distribution, the likelihood P(X = 6; θ) is given by: 

6 4C ˜ (1 °˜ ) . (4.1)10 6 

This is a function of θ, and is illustrated by the plot in Figure 4.1. The graph 
appears to hit the highest likelihood around θ = 0.6. This can be confrmed by 
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FIGURE 4.1 The plot of the likelihood of the binomial model with parameter 0 ≤ 
θ ≤ 1, when 6 heads are observed out of 10 tosses. 
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diferentiating likelihood function (Equation 4.1). Recall that a derivative of a 
function gives the slope of its graph at a given point. Since the slope becomes 
zero at the vertex, to maximize likelihood function (Equation 4.1), one can just 
diferentiate it with respect to θ and set the result to zero. The diferentiation gives 

5 3˜ (1 °˜ ) (6 ° 10˜ ) (4.2) 

(we ignored 
10

C
6 
since it is a constant that does not involve the parameter). This 

becomes zero if θ = 0, 1, or 0.6. Seeing that the graph hits the bottom instead 
of the top at 0 and 1, we conclude that the likelihood is indeed maximized at 
θ = 0.6; that is, the hypothesis that best accommodates the result of 6 heads 
out of 10 tosses is that the coin lands heads with probability 0.6. 

In Figure 4.1, we took as our target statistical model the binomial distribu-
tion, which has only one parameter θ. In a similar way, when a model has 
multiple parameters, one may seek for the tuple of parameters that maximizes 
the model’s likelihood. The parameters thus obtained are called maximum likeli-
hood estimators, or MLE for short, and denoted by θ  with a hat. We denote the 
maximized likelihood of the model M by ℓ(M).2 In this example, we obtained 
the maximum likelihood of the binomial model by maximizing its likelihood 
function (Equation 4.1). But in practice, one usually tries to maximize not the 
likelihood function itself but its logarithm, called the log likelihood. This is only 
for the sake of computational convenience (by taking logarithms, products of 
probabilities become sums, which are much easier to compute), and does not 
alter the result—that is, the parameters that maximize the likelihood also maxi-
mize the log likelihood, and vice versa. A model’s maximum log likelihood will 
be denoted by logℓ(M). 

ˆ 

As long as our target model is simple as in the previous example, its 
maximum (log) likelihood can be easily obtained by diferentiating the likeli-
hood function. But when the model is complex and has a number of param-
eters, its likelihood function also tends to get complex, making it difcult 
to fnd its maximum analytically. Even if the likelihood function is diferen-
tiable, it may be exceedingly hard to solve the relevant extremum problem. 
In that case one needs to approach the peak by climbing the likelihood 
function step by step. Let us illustrate this procedure with the aforementioned 
binomial case. (Since this particular problem can be solved analytically, as 
already shown, this procedure is unnecessary. We do this only for the purpose 
of illustration.) First, we pick a departure point at random. Let us start from, 
say, θ = 0.4. Plugging this into the derivative (Equation 4.2) of the likeli-
hood function gives us the slope at this point. The result is (0.4)5(0.6)3(2) ∼ 
0.004, which means that the slope is positive and rising toward the right. So 
we climb to the right a little bit, say to θ = 0.5, and then calculate the slope 
at this new point. Repeating this procedure will bring us to the peak of the 
likelihood function, θ = 0.6. 
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Such a straightforward hike to the peak, however, is guaranteed only for 
“Mt. Fuji-shaped” likelihood functions with a single peak; for more complicated 
functions with rugged landscapes, the step-by-step climbing will likely to bring 
you to a local optimum/peak, unless you are lucky enough to start from the 
foot of the global optimum. The climbing in our example was further simpli-
fed by the fact that it takes place in just one dimension (along the θ axis), 
because the model had just one parameter. But if it had n ≥ 2 parameters, the 
mountain to be conquered is an n-dimensional hypersurface, and we need to 
check the slope along n directions at each step, making the numerical search 
for the maximum likelihood estimator much more cumbersome. We will return 
to this issue later when we discuss deep learning. 

The method of maximum likelihood thus tries to fnd the parameter values 
of a model that best accommodate or “predict” observed data. Adjusting a model 
to a particular dataset is called model ftting, and an adjusted model is called a 
ftted model. The maximum likelihood method is a popular model-ftting tech-
nique, but not the only one. Another famous approach is the least squares method, 
which aims to fnd the parameters that minimize the discrepancy of a model’s 
predictions with the actual values. Either way, the goal is simply to ft a model 
to a particular dataset, nothing more or less. In particular, the maximum likeli-
hood and other model-ftting methods do not imply anything about the cor-
rectness of the model—i.e., there is no connotation that the ftted model likely 
captures or approximates reality. This is obvious from our example: even if the 
maximum likelihood estimator after 6 heads is ˜ ° 0 6. , it would be premature 
to conclude that the coin is biased toward heads.3 The maximum likelihood 
method just picks the hypothesis that best fts this or that particular dataset, 
without paying attention to whether that hypothesis is true in a more general 
setup. In this respect, the maximum likelihood and other model-ftting methods 
have a diferent purpose and nature from those of the Bayesian estimation and 
hypothesis testing methods that we saw in the previous chapters. 

ˆ 

4.2 Model Selection 

4.2.1 Regression Models and the Motivation for Model Selection 

With these remarks in place, let’s move on to the main topic of this chapter, 
prediction. To make things concrete, we consider a simple regression model as 
a means for prediction. In general, regression is a method where one uses a set 
of variables X to predict or classify the value of another variable Y.4 We encoun-
tered regression when we introduced Galton in Chapter 1, but within the 
confnes of descriptive statistics, its use was limited to summarizing past data. 
Our goal here, in contrast, is to predict the unobserved on the basis of the 
observed, and that falls into the realm of inferential statistics. If we were to use 
Galton’s data to infer the height of unobserved families who lived in London 
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in that era, then our problem would be that of prediction, and we would use 
regression for that purpose. Such regression problems are ubiquitous: inferring 
weight from height, predicting college admission from SAT scores, and detecting 
an object, say a cat, in visual images are typical examples. 

In regression models, the variables that serve as the basis for prediction are 
called explanatory variables, while those that are to be predicted are called response 
variables.5 In the three examples just described, the explanatory variables are 
height, SAT scores, and images, while the response variables are weight, college 
admission, and “cathood,” respectively. Of course, we could investigate more 
than one explanatory variable; for instance, we could take into consideration 
not just the SAT scores but also other factors, like essay scores, high school 
grades, and so forth in predicting college admission. In this case, the set of 
explanatory variables is expressed by a vector X = (X

1
, X

2
, . . ., X

n
), with values 

x = (x
1
, x

2
, .  .  ., x

n
). There should also be a host of other factors that are not 

explicitly registered as explanatory variables. These factors are lumped together 
as an error term, expressed by ϵ. An error term ϵ is a random variable that is 
assumed to follow a particular distribution. With this setup, a regression model 
describes the response variable as a function of the explanatory variables and 
error term: 

y = f ( ,x  ). 

The aim of a regression problem is to determine the functional form of f 
which would allow good predictions of y from input x. This is done by frst 
determining the general form of the function f and then working out the 
details by adjusting its parameters. That is, we again introduce a “probabilistic 
kind,” as we did in Chapter 1. Indeed, what people call a (parametric) regres-
sion model is nothing but a probabilistic kind. Such probabilistic kinds/models 
come in various guises, but the simplest linear regression model has the following 
form: 

y ˜ f x ( , ; )˛ 
˜ ˝ x ° ˝ x ° ° ˝ x ° 1 1  2 2  n n  

which expresses the response variable as a sum of the explanatory variables and 
error term. The parameters θ of this model are the regression coefcients β

1
, 

β
2
,··· which measure the relative importance of each explanatory factor, and the 

parameters that determine the distribution of the random error term ϵ. For 
instance, if the error term follows a normal distribution, the parameters will be 
the mean µ and variance σ2. In this case, the mean µ determines the y-intercept 
of the regression line, while the variance σ2 represents the dispersion of data 
around the line. The frst line of the aforementioned formula, f(x, ϵ; θ), expresses 
the fact that the regression model f is fully specifed by the parameters θ, and 
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that through this function the distribution of the response variable is determined 
when a particular input x is given. 

Since a regression model is nothing but a parametric statistical model, or a 
probabilistic kind in our parlance, we may resort to the traditional inferential 
statistical approach we saw in the previous chapters to estimate its parameters, 
and then use it for prediction. In the Bayesian approach, one can calculate the 
posterior distribution for each parameter from the data and then derive the 
posterior predictive distribution (Section 1.2.3). Frequentists, on the other hand, 
can test whether each regression coefcient signifcantly difers from zero, or 
calculate their confdence interval (not covered in this book). However, things 
get much simpler when one uses the maximum likelihood method. In this case, 
one seeks the ˜̂  ° ( ,˛̂ 

, ,˝̂ ˙̂ 2 ) that maximizes the probability of observed1 
data. As we saw in Section 2.3.2, once the parameters of a probabilistic kind 
are fxed, so is the joint distribution of X and Y, and thus the probabilities 
of their values can be calculated; one can then use these probabilities to 
predict Y.6 

All of these procedures assume a particular probabilistic kind/regression model as 
the data-generating process, and aim to correctly identify that probabilistic kind 
for the purpose of prediction. In the previous example, for instance, we adopted 
a linear model that takes X

1 
to X

n
 as the explanatory variables to be used for 

prediction. But how should we select a particular model to begin with? In most 
cases there are several candidates. For predicting college admission, one may 
consider a model that uses only SAT scores, or those that also include essay 
scores, high school grades, and so on. Which out of these various candidates 
should be selected? The theory of model selection aims to answer this question. 
As we will see, it provides a criterion for choosing one among multiple proba-
bilistic kinds or models on the basis of their predictive performance. 

4.2.2 A Model’s Likelihood and Overftting 

In this section we explain the idea of model selection using a simple example, 
with a particular focus on the theory of Akaike’s information criterion (Akaike 
1974). Consider two linear regression models 

2M y1 : ˜ ˙1x1 °  ,  ~ N ˛ˆ1,ˇ ˝ (4.3)1 

and 

2M : y ˜ ˙ x ° ˙ x °  ,  ~ N ˛ˆ ˇ, ˝ (4.4)2 1 1 2 2 2 2 

where ϵ ∼ N(µ, σ2) means that the error term ϵ follows the normal distribution 
with mean µ and variance σ 2. Let us denote the parameters of the frst model 
by ˜1 ° , ,  ˝ 2 ° , , , ˝˛˙ ˆ ˇ1 1 1 

2  and those of the second model by ˜ ˛˙ ˙ ˆ ˇ 2 .1 2 2 2 
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More specifcally, let’s interpret these regression models as models for predicting 
the GPA score Y of college students, where M

1 
takes only the SAT score X

1 
as 

the explanatory variable, while M
2 
also takes high school grades X

2 
into account. 

How can we decide which of these to use for prediction? An initial idea 
may be to see how these models ft the data—that is, to compare their maxi-
mum likelihood ℓ(M

1
) and ℓ(M

2
). If we have data d = (x

1
, x

2
, y), we can apply 

the maximum likelihood method to obtain MLE θ̂1, θ̂2, which respectively 
maximize the likelihood of the models M

1 
and M

2
. This allows us to compare 

their maximum likelihoods 

 ̃ M1 ° ˛ P ̃ d;˝̂1 ° ,  ̃ M2 ° ˛ P ̃ d;˝̂2 ° 

Since the likelihood measures how well a model accommodates data, it seems 
reasonable to choose the model with the higher likelihood as the better one. 

This strategy, however, does not work. To begin with, no matter what the 
data is, M

1
’s likelihood never exceeds that of M

2
, so it is always the case that 

ℓ(M
1
) ≤ ℓ(M

2
), making the attempted “comparison” meaningless. This is because 

M is just a special case of M , without x . Hence, however well M fts the
1 2 2 1 

given data, M
2 
can fare at least equally well by letting β

2 
= 0. In general, if we 

have nested models like M
1 
and M

2 
in this case, the more complex model with 

more parameters always has a better or at least an equally good likelihood, 
because it has more degrees of freedom for accommodating the data. As long 
as we compare likelihoods, we always end up favoring the more complex model. 

Furthermore, there is no direct relationship between a model’s likelihood and 
its predictive performance, which is our primary concern here. Likelihood, recall, 
is the probability of obtaining the given data under the assumption of a particular 
hypothesis/model, so it measures how well the model makes sense of what is 
observed. In contrast, prediction concerns what the model will tell us about data 
yet to be observed. A model that accommodates the past well is not necessarily 
the best guide for the future. The reader may sense here the specter of Humean 
skepticism, but there is a further glitch. Even if we assume a uniformity of nature, 
ftting a model precisely to the data is not always a good idea. This is because 
any dataset from a stochastic process necessarily contains sporadic noise—hence, 
a complex model that accommodates the given data well may also have been ft 
to this noise, which would compromise the model’s ability to predict unobserved 
data. This is called overftting. In order to avoid overftting, we need a criterion 
other than the likelihood for evaluating a model’s predictive ability. 

4.2.3 Akaike Information Criterion 

Akaike’s approach to this problem is to turn our eyes from the model’s likeli-
hood to the mean likelihood (or more precisely, mean log likelihood). We are 
interested not in how well a model accommodates the actual data at hand, but 
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rather in how well it predicts data yet to be observed. But how to measure this 
predictive ability? One reasonable idea is to consider the model’s average predic-
tive performance that we would obtain if we were to keep using it to repeatedly predict 
similar datasets. If we measure the performance of each prediction by the likeli-
hood, this amounts to evaluating the model’s mean likelihood. 

As a specifc example, consider making similar predictions over and over 
again using the model M

1 
(see Figure 4.2). We begin by ftting the model M

1
, 

i.e., calculating the MLE of its parameters, to the data of, say, 1000 college 

Since the parameters of M1 are fully specifed, we can use it to predict new 
data. So we collect data for another 1000 students the following year and cal-
culate the likelihood of this ftted model using this new data. Suppose we 

students in a particular year. Let us denote the resulting ftted model by M1. 
ˆ 

ˆ 

FIGURE 4.2 A (hypothetical) calculation of a model’s mean likelihood. The predictive 
performance of a ftted model M̂ can be evaluated by averaging its 
likelihood with respect to many datasets of the same nature. The mean 
likelihood of the model M is obtained by repeating this process over 

M M ,̃°diferent initial datasets, using ftted models ˆ ,̃ ˆ  (note these have 
diferent regression slopes due to randomness in the ftting data). Since 
this calculation is infeasible in reality, AIC aims to estimate it from a 
single dataset. 
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repeat this procedure of calculating the likelihood the next year, the year after 
that, and so on indefnitely. By averaging the model’s likelihoods over n years, 
or theoretically over infnitely many years, we will obtain the mean likelihood 
of the ftted model M1. This already seems like a lot of work, but we’re not 
there yet: what we have calculated is the mean predictive performance of the 
ftted model M̂ 

1, which was obtained by attuning the model M
1 
to the particular 

dataset we happened to observe in the frst year. Because this initial dataset 
clearly involves some randomness, there is no guarantee that this particular result 
correctly measures the predictive performance of M

1
. We thus need to average 

out this initial variability too, by repeating the entire ftting procedure with 
many diferent initial datasets. This will eventually give us the mean likelihood 
of the model M

1
. We may take this as a measure of the model’s predictive abil-

ity, in the sense that it tells us how well the model is expected to make predic-
tions on average, if it is used repeatedly for similar predictive tasks. 

ˆ 

To derive the mean likelihood, we had to imagine making indefnitely many 
predictions with the same model and taking the expectation of the outcomes. 
Since such a maneuver cannot be done in practice, the mean likelihood of a 
model is not something one can measure directly from data. But like other 
parameters in general, we may estimate it from the data at hand. Akaike has 
shown that under certain assumptions,7 an estimator of the mean log likelihood 
of a model with k parameters is given by 

log ( M ) − k 

This shows that two factors afect a model’s mean predictive performance. 
One is the model’s maximum log likelihood, log ℓ(M), which expresses how 
well the model M accommodates the data at hand. As we noted previously, 
as the model becomes more complex, this term increases and contributes 
positively to its predictive performance. But since this value is calculated on 
the basis of a particular dataset, there is no guarantee that the same model 
will score an equally good likelihood when calculated with new data. In this 
sense, the actual likelihood overestimates the model’s mean predictive perfor-
mance, so it needs to be discounted. The correction comes from the other 
term k, which represents the number of parameters in the model. Complex 
models have many parameters, and thus larger k. The minus sign before k 
means that too large a k compromises predictive performance; this term thus 
imposes a penalty on the complexity of a model. As a result, a model’s mean 
log likelihood is determined by the balance between its data-accommodating 
ability aforded by its complexity, and the penalty placed on this complexity. 
With our example models M

1 
and M

2
, the frst factor favors M

2
, since log 

ℓ(M
1
) ≤ log ℓ(M

2
). M

2
, however, has k = 4 parameters whereas M

1 
has just 

k = 3, so the second factor favors M
1
. Therefore, the more complex model 

ultimately outstrips M if the introduction of the extra parameter in MM
2 1 2 



 

 

 

 
 
 
 
 

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

118 Model Selection and Machine Learning 

increases its likelihood enough to compensate for the penalty placed on the 
extra parameter. 

Although this discussion featured nested regression models, where one model 
(M

1
) is a proper subset of the other (M

2
), Akaike’s framework can also efectively 

evaluate the relative predictive performance of non-nested models or diferent 
distribution families. Conventionally, the mean log likelihood times −2, namely 

−2(log ( M ) − k), 

which is now called the Akaike Information Criterion or AIC, is used to evalu-
ate the predictive performance of models. We cannot go into the details here, 
but AIC gives, under certain assumptions, an unbiased estimator of the mean 
discrepancy (measured by the so-called Kullback–Leibler divergence) between 
the model’s predictions and random samples taken from the true probability 
model (Konishi and Kitagawa 2008). We can thus expect that a model with a 
smaller AIC gives better predictions, in the sense that its predictions deviate less 
on average from actual sampling outcomes. 

4.2.4 Philosophical Implications of AIC 

The insight of the theory of AIC discussed in Section 4.2.3—namely, that too 
many parameters may impair a model’s predictive performance—has a somewhat 
paradoxical implication. According to the framework of traditional inferential 
statistics that we saw in the previous chapters, a statistical inference proceeds by 
modeling the data-generating process in terms of a certain probabilistic kind 
(statistical model), whose details are then specifed from the data to make predic-
tions of unobserved samples (see Figure 1.2). This picture naturally leads one to 
expect that the more accurately the presupposed probabilistic kind approximates 
the actual data-generating process, the better its predictions become. The theory 
behind AIC, however, suggests that this expectation is not necessarily borne out. 
To see this, let us suppose that in reality our response variable Y is infuenced by 
both explanatory variables X

1
, X

2
—that is, that the model M

2 
(Equation 4.4) gives 

a true and complete picture of the underlying probability model. We further 
assume, however, that the infuence from X

2
 is much smaller than that of X

1
, so 

that β ≫ β ≈ 0. In this case, adding the factor X  to the model as in Equation
1 2 2 

(4.4) will not boost the log likelihood. If the increase is less than 1, the model 
(Equation 4.3) with only one explanatory variable X may have a smaller AIC M

1 1 

score, and thus be judged to make better predictions (in the sense described 
earlier). This is so even if (by assumption) the model M

1 
overlooks the actual 

factor X
2
, and is hence more distant than M

2 
from the actual data-generating 

process. AIC, therefore, indicates the possibility that a “true” statistical model that 
faithfully describes the underlying probability model may nevertheless fare worse 
in prediction than a model that “distorts” reality by omitting some factors. 
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The conclusion that a model removed from the truth can give better predic-
tions may sound paradoxical to some. But far from being a paradox, this is 
actually a general feature common to any kind of scientifc reasoning based on 
models or natural kinds. For one thing, proper idealizations and simplifcations 
are part and parcel of all scientifc investigation (Cartwright 1983). In efect, to 
classify worldly things into discrete natural kinds already involves an abstraction 
of individual niceties, and in that sense is a distortion of reality. You and I have 
diferent physical compositions, and even the cells constituting my skin difer 
slightly from each other. To classify these diferent things in terms of natural 
kinds such as “homo sapiens” or “epidermal cells” is to ignore their particularities 
and distort their details. But this kind of abstracting away is precisely what makes 
inductive inferences possible; for example, “what is toxic to me will also be so 
to you,” or “an ointment that worked with an insect bite here will also work 
with one there.” If we refuse to admit this kind of rough categorization and 
insist on counting every single human as a distinct being, we will no longer be 
able to learn anything from the experiences of others. To perform inductive 
reasoning, therefore, we need to identify things at a certain level of granularity 
and ignore all niceties and peculiarities below it. The same applies to statistical 
reasoning with probabilistic kinds. The same data-generating process can be 
described by diferent models with diferent numbers of parameters. The ques-
tion of which probabilistic kind to use is comparable to the question of at which 
granularity we should describe a human being, where the possible options would 
include “living creature,” “animal,” “mammal,” “homo sapiens,” “middle-aged 
men,” and so on. And just as an unnecessarily scrupulous natural kind does not 
contribute to inductive inferences, a probabilistic kind that is too detailed will 
not give us efective predictions. AIC makes this explicit in terms of the mean 
log likelihood and informs us of the probabilistic kind of the right granularity 
through the estimation of its long-term predictive performance. 

This invites us to rethink the statistical ontology introduced in Chapter 1. 
As we noted there, probabilistic kinds or natural kinds in general provide basic 
ontological units with which scientists carve nature (Section 1.2.4). Such natural 
kinds often form a hierarchical structure. For instance, a human being, an 
example of an ecological natural kind, consists of cells and other physiological 
kinds, which in turn are composed of chemical kinds such as molecules and 
atoms, which are further composed of physical kinds such as protons, electrons, 
and so forth. Lower-level kinds compose higher-level ones and allow for fner-
grained descriptions of reality. If all entities existing in nature are composed of 
physical elements, then everything should be describable solely in terms of 
physical kinds. Why, then, do we still care about naive and coarse-grained natural 
kinds like “trees” or “birds,” rather than regard them simply as clouds of particles 
condensed in diferent ways? The reason is that higher-level natural kinds, though 
they may be vague and imprecise descriptions of the world, play an indispens-
able role in explanation and prediction. By identifying a bird that built a nest 
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on my neighbor’s tree as a swallow, I can predict its departure in autumn. I 
certainly could not make a similar prediction at the atomic level. Virtually all 
our everyday inferences are made possible in this way, i.e., by demarcating a 
part of the world and subsuming it under a certain category. Daniel Dennett 
(1991) called these categories that we carve out from nature real patterns. “Swal-
low” and “noble metal,” along with other natural kinds, are typical examples of 
real patterns that help us in our predictive and explanatory endeavors in relevant 
contexts. When we look at them closely, they may be very rough generaliza-
tions splattered with noises and exceptions. Be that as it may, they are real 
insofar as they help us predict the future, and in this sense they have every right 
to be treated as bona fde entities. 

Going back to statistics, we observe that some probabilistic kinds form a hierarchical 
structure just like conventional natural kinds. One and the same relationship between 
two variables could be modeled using a linear regression model, or with a polynomial 
model that accommodates any smooth curve; the latter can describe the relationship 
with much better resolution and precision. If our goal is to obtain a faithful reproduc-
tion of the uniformity of nature, then we should prefer complex models with a higher 
degree of freedom, since they give a picture closer to the truth. If, however, our goal 
is prediction, a model that is too fne-grained may fare worse than a coarse-grained 
one due to random noise inherent in the sampling and estimation processes. Faced 
with this situation, AIC aims to identify the model with the right granularity, or in 
Dennett’s parlance, to carve out a real pattern from the data. Note the two meanings 
of “real” here. In one of its senses, the word refects the idea that a model that 
approximates the data-generating process (i.e., probability model) well is real, while 
in the other sense it captures the Dennettian idea that patterns that contribute to 
predicting unobserved instances should be regarded as real. 

Distinguishing these two ontological attitudes helps us understand what AIC 
is and what it is not. It is sometimes claimed that the purpose of AIC is not 
to choose the true model (Kasuya 2015), while at other times it is said to 
measure the (expected) distance of a model from the true distribution (Leeow 
1992; Ponciano and Taper 2019). These apparently conficting ideas nevertheless 
make a sense if we consider the dual meaning of “reality” mentioned previously. 
The word “true” in the frst claim refers to the faithful reconstruction of the 
probability model that generated the given observations, and that is certainly 
not the goal of AIC. In contrast, the “distance” in the second claim refers to 
the discrepancy between predictions from a given statistical model and future 
samples to be taken from the true distribution; in other words, it refers to the 
extent to which the model under consideration deviates from the pattern that 
we recognize at diferent times and places (Figure 4.3). AIC thus evaluates the 
reality of statistical models in the sense of real patterns, and by doing so it brings 
an alternative meaning of “reality” into statistics. One might even argue that 
this alternative ontology is more in line with the original aim of statistical infer-
ence. In Chapter 1, we characterized the probability model as a fundamental 
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Unknown 
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(Hypothetical) sampling 

Sampling 
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Model tting 

Predictions & evaluation 
Mean (log) likelihood 

Real pattern 

Fitted model 

FIGURE 4.3 AIC evaluates models based on data obtained from an unknown probability 
model (the left vertical arrow). The goal is not to give a faithful descrip-
tion of the probability model, but rather to choose a model that accurately 
predicts, on average, future data (right) to be obtained from similar 
sampling processes. This is tantamount to identifying a real and stable 
pattern that will appear over diferent datasets. 

ontological assumption of inferential statistics. But why did we need to introduce 
an additional entity beyond the data? That was because inductive inference is 
impossible without this assumption of the uniformity of nature. This suggests 
that from the very frst motivation for their introduction, the conceptual func-
tion of “entities” in statistics is not descriptive (i.e., to describe the data-generating 
process as it is), but rather instrumental (to make successful predictions). Given 
this purpose for introducing a new entity, it is only natural that an entity’s 
contribution to prediction should be a major criterion when deciding to carve 
it into a probabilistic kind of a certain form. AIC gives substance to this idea 
by providing a method for evaluating the reality of probabilistic kinds qua real 
patterns. 

Behind this discussion lie deeper questions regarding the nature and goal of 
statistics and of science in general. A popular image of science is that it aims 
to uncover the world as it really is in its fnest details. On this view, natural 
kinds, being the basic conceptual units of science, must capture what the ele-
ments composing this world are really like. That is, the ideal scientifc ontology 
must be able to reproduce the actual world down to the most minuscule details. 
It is by grasping the structure of the world in this way that science is able to 
explain worldly phenomena. 

While this may indeed be a plausible picture, it is not the only view. Another 
perspective on science takes its major goal to be the elucidation of not so much 
how the world actually is as how it will become—that is, to make successful 
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predictions (van Fraassen 1980). Francis Bacon’s famous dictum, “scientia potentia est,” 
refers to this predictive power of science. If we are to follow this Baconian line of 
thought, the aim of scientifc ontology should be not so much the making of a 
faithful replica of the world, as the identifcation of real patterns through appropriate 
abstractions and simplifcations. This leads us to a kind of pragmatism (Sober 2008). 
William James, one of the early founders of pragmatism, argued that we should 
replace the traditional conception of truth as a correspondence of our ideas with 
the external world with a new theory of truth, according to which the truth is 
nothing but those beliefs that serve us well (James 1907). On this view, the claim 
that such and such things exist is judged true if and only if such a belief contributes 
to a particular purpose, which in our context is prediction. It is not that true ideas 
guide our reasoning because they are true; rather, those ideas that facilitate inductive 
inferences are acknowledged to exist as natural or probabilistic kinds. Pragmatic 
scientifc ontology thus inverts the relationship between existence and cognition. 

What is worth noting here is that what counts as useful depends on the 
context. In the present context of prediction, the model that AIC chooses to 
recommend depends, among other things, on the size of data we can aford 
in making predictions (Figure 4.4). As the data size becomes larger, the absolute 
value of a model’s log likelihood increases. This means the penalty on the 
number of parameters will weigh less, swinging the balance in favor of a more 
complex model. By the reverse logic, small datasets will tend to favor parsi-
monious models. Which probabilistic kinds are picked out as real patterns, 
therefore, depends not only on the objective features of the world, but also 
on a practical factor—the size of available data. Due to this feature, AIC has 
sometimes been criticized as lacking statistical consistency. An estimator is said 
to be consistent if it converges to the true value as the data size approaches 
infnity. For instance, Bayesian inferences are consistent in that the posterior 
probabilities converge to the true distribution as the sample size grows indef-
nitely (see Section 2.3.3), and in the same vein the Bayesian model-selection 
criterion (so-called BIC) asymptotically selects the true model. This is in 
contrast with AIC, which, for the reason stated earlier, does not necessarily 
choose the model that faithfully captures the data-generating process, even with 
an infnitely large dataset (Sober 2008). However, there is nothing problematic 
about this given the purpose of AIC, which is to identify real patterns that 
contribute to prediction. Since any prediction must be made on the basis of 
a limited data source, the pattern that counts as “real” should depend on the 
user, or more precisely, on the amount of data available to the user, just as the 
patterns of odor that dogs likely recognize as real may well difer from those 
we humans are able to identify. From the canine perspective, the patterns we 
are able to snif out with our poor olfactory sense might well be miserably 
coarse-grained. But as long as it helps us predict today’s supper, the smell of, 
say, clam chowder or apple pie is a bona fde real pattern. If the odorous pat-
terns to be counted as real depend on the number of olfactory cells that a 
cognizer (dogs or humans) possesses, it is only natural that the probabilistic 
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kinds to be counted as real likewise depend on the amount of data the cognizer  
has. In this spirit, AIC carves the world in line with its pragmatic goal of  
predicting the future based on limited resources. This kind of pragmatic ontol-
ogy also implies the possibility that diferent real patterns emerge for diferent  
cognizers. We will return to this ontological relativity after we review deep  
learning, which in a sense takes the opposite approach to the problem of  
prediction. 

4.3  Deep Learning 

Prediction is a central topic not only in model selection, but also in the rapidly 
developing feld of machine learning, the most successful among which is deep 
learning. In this section we review its basic machinery and consider how it 
approaches the problem of prediction. 

4.3.1  The Structure of Deep Neural Networks 

Although deep learning has come to be applied to various kinds of problems, 
its central task has been the problem of prediction. Image classifcation, auto-
mated medical diagnosis, and speech transcription are examples of predictive 
tasks, where the goal is to return the most appropriate value y of the response 
variable as output given some values x of the explanatory variables as input. In 
this sense, a deep learning model adapted to this sort of problem is a kind of 
regression model. But in contrast to the conventional parametric statistical 
models, deep learning models usually have an extremely complex structure with 
an enormous number of parameters, and in this respect they go against AIC’s 
spirit of “less is more.”  On the other hand, its ftting method incorporates an 
idea similar to the one we saw in Akaike’s theory. With this (dis)similarity in 
mind, let us briefy review the structure of deep learning models and the meth-
ods used to train them. 

The standard model of deep learning is a deep neural network (Figure 4.5). 
Each node (neuron) of a neural net represents a random variable. These nodes 
are arranged in layers, which are piled up to form a multilayered network. The 
model successively computes values of the variables/nodes from the left layers 
in the fgure to the right, until the rightmost layer gives the fnal output. First, 
the data are fed into the leftmost input layer (X

1
, X

2
, . . .,  X

N
); these correspond 

to the explanatory variables of a regression model. The only diference is the 
scale—while the number of inputs or explanatory variables in most traditional 
regression models ranges from several to at most a few dozen, in deep learning 
models the number far exceeds thousands or even millions. Even the simplest 
model that recognizes an object in a 256 × 256-pixel monochrome picture has 
65,536 input variables, each of which quantifes the brightness of a pixel at a 
particular location. Commonly used images, videos, and voice data require much 
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larger inputs. Next, the variables in the input layer are projected onto the 
1 1 1adjacent middle layer Z Z, ,˜,Z 1 . (Here the superscripts denote the fact° 1 2 ˛n 

that these variables belong to the frst middle layer, while the subscripts label 
the n1 nodes/variables constituting this layer.) The values of these middle-layer 
variables are determined by the values relayed from the input layer. In fact, each 
of these determination processes constitutes a regression model like those we 

1saw in the previous section. For example, the value of the topmost variable Z1 
can be written as 

1z1 ˜ f ˛w011 ° w111x1 ° w211x2 °  ° wN 11xN ˝ (4.5) 

Note that what is inside the parentheses is nothing but the now-familiar linear 
regression model. The intercept w

011 
is the baseline, while the ith regression 

coefcient w represents the weight of input x . The value of Z1
1  is obtained

i11 i 

by applying an activation function f to the weighted sum of the inputs. There 
are several kinds of activation functions, but the most commonly used is the 
rectifed linear function/unit (ReLU): 

f u( )  = max(u, )0 , 

  FIGURE 4.5 An example of a deep neural network. The input layer X is projected 
onto the middle layers Z1, . . ., Zm, which fnally lead to the output Y. 
Each projection constitutes a regression model. The nature of the pro-
jections and structure of the layers difer from model to model. A model 
whose nodes in consecutive layers are fully connected as in this example 
is called a multilayer perceptron. 
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which simply returns zero if the inside of the parentheses in Equation (4.5) is 
smaller than zero, and returns the input value itself if it is zero or larger. One 
can think this as a neuron that “fres” if its input exceeds the threshold of zero, 
but stays inactive otherwise. Repeating this calculation for each variable in 

1 1Z1 , ,Z 1 determines the values of the frst middle layer. … 
n 

A deep neural network is constructed by piling up such layers over and over. 
Each middle layer is calculated in a similar manner: the nodes in the j + 1-th 
layer are determined by a regression model like Equation (4.5) that takes inputs 
from the nodes in the jth layer. In the fnal step, the terminal middle layer is 
connected to the output y via another regression model. This regression model 
that gives the fnal output comes in a variety of forms, depending on the pur-
pose of the model. When we want to make a prediction for a continuous 
variable, for instance, we might use a simple linear regression, whereas for a 
classifcation into discrete categories, one often uses logistic or softmax functions 
that return certain labels according to thresholds. 

In this way, a deep neural net is constructed by stacking layers of nodes 
connected via regression models. The model as a whole takes the explanatory 
variables X as input, processes them successively through the middle layers, and 
fnally yields outputs in the response variable Y. This means that a deep neural 
network is itself a gigantic regression model. Indeed, the whole model can be 
written down in a compact form as 

y = g( ;x w) (4.6) 

This shows that the behavior of a deep neural net g is specifed by the set of 
parameters w, and that its output y is uniquely determined given the input x. 
Hence, in the parlance of this book, a deep neural net is simply another proba-
bilistic kind, albeit an enormous and labyrinthine one. While the size of neural 
nets varies depending on their purpose, the standard models in the deep learning 
literature (at the time of writing) have tens or hundreds of middle layers, with 
parameters ranging in the billions. Thus, despite its simple guise, Equation (4.6) 
may contain billions of parameters w, and the function g usually has such a 
complex form that it is impossible to write it down as an explicit formula. 

4.3.2 Training Neural Networks 

Constructing a deep neural network in this way is only the frst step. The next 
important step is to train the model, i.e., to adjust its parameters by ftting the 
model to concrete data (called “training data”). At the beginning of this chapter, 
we reviewed the method of maximum likelihood as a paradigmatic approach to 
model ftting. Recall that the method regards a model’s likelihood as a function 
of its parameters and searches their maximum points (that is, the combination 
of parameters that maximizes the probability of the data) by a step-by-step 
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“climbing” of the likelihood function. The same approach is taken in the train-
ing of deep learning models, but it is customary to use the negative of the log 
likelihood and train the model by minimizing it by “descending” into a valley. 
Flipping the sign in this way does not at all change the essence of the maximum 
likelihood method. The target negative log likelihood function is called the error 
function or loss function since it expresses the degree in which the model fails 
to ft the data. Other common measures of misftting include the aforementioned 
method of least squares. In this case, the goal is to fnd the parameters that 

2minimize ˜i ˛y ° ŷ ˝ , the square of the diference between the model’s output i i 
ŷi and the actual value y

i
 summed over every sample i in the training data. 

The basic strategy for ftting deep learning models, therefore, does not difer 
from those used in traditional statistical models. The complexity and sheer 
magnitude of deep neural nets, however, pose unique difculties. First, the 
immense number of parameters means that the training by “valley descent” must 
take place in a space of enormously large dimension, of the order of millions 
and billions. We saw previously that the numerical approach for the method of 
maximum likelihood sets of from a particular combination of parameters taken 
as a starting point, diferentiates the log likelihood or loss function to calculate 
the slope (gradient) at that point, and then moves along the calculated slope— 
repeating this process should gradually increase the likelihood or decrease the 
loss. To carry out this process over the many layers of parameters, deep learning 
adopts the backpropagation method. This technique starts by calculating the deriva-
tives of the loss function with respect to the parameters situated right next to 
the output layer, and then propagates the results toward the input. We will not 
go into the details here, but such a cascade-like calculation procedure allows us 
to determine the slope of the loss function at any point, even for a model with 
billions of parameters. So in theory it works beautifully, but in actual practice 
we are faced with a technical issue: the backpropagation method amounts to 
multiplying the derivatives of parameters many times through multiple layers 
from output to input, and in this process the values may vanish or diverge to 
infnity. This vanishing gradient problem especially vexed early attempts to train 
multilayered neural models (e.g. Kelleher 2019, ch. 3). 

Determining the slope of a loss function is not the whole story. As mentioned 
before, whether the step-by-step valley descent can bring us straight to the 
optimal point critically depends on the shape of the valley; that is, the nature 
of the loss function. In this regard, it is very unlikely that the loss function of 
a complex deep learning model has a simple form like in Figure 4.1; instead, 
its landscape is expected to be rugged, with precipitous mountains and deep 
valleys, making a straightforward hike to the peak hardly possible. Hence, wher-
ever one starts, one can hardly hope to arrive at the global optimum and must 
be content with a locally “good enough” solution. This results in underftting, 
but there is also the opposite risk of overftting. As we saw in the previous 
section, increasing the number of parameters allows the model to better 
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accommodate data but may also make it sensitive to noises peculiar to the train-
ing data, thereby impairing its performance in predicting new data (called its 
“generalization capability”). The enormous number of parameters in deep neural 
networks make them highly fexible and capable of approximating any function 
to the desired accuracy. But due exactly to this universal approximation property, 
deep learning models are prone to overft to particular datasets and lose their 
generalization capability. These issues posed serious obstacles to early research 
on deep neural networks. 

The remarkable advances in deep learning today owe to various breakthroughs 
with regard to these problems. There are roughly three classes of approaches 
and techniques for efectively training huge neural nets without falling prey to 
the vanishing gradient problem or overftting: 

1.  Designing the network architecture and its components in such a way that large-scale  
models can be efectively trained. The model in the earlier illustration is fully con-
nected, with each node in one layer afecting every node in the next layer.  
This, however, is not necessary. For instance, one may reduce the number of  
connections and parameters by allowing the nodes in a middle layer to take  
inputs only from a part of the previous layer. A paradigmatic example is con-
volutional neural networks (CNN), which demonstrate high performance in  
image recognition and can be trained efectively even when the model has  
many layers. The choice of activation function (Equation 4.5) is also impor-
tant. For example, the vanishing gradient problem was signifcantly improved  
by the introduction of the aforementioned rectifed linear function, which  
replaced the sigmoid or logistic function that had been previously used. 

2.  Partial or piecemeal training of models through pre-learning, dropout, and batch nor-
malization. A major difculty in training deep neural nets stems from the 
fact that, due to the immense number of parameters, adjusting parameters in 
one part of the model tends to interfere with the adjustment of parameters 
in other parts. This can be partly prevented by decomposing the model into 
manageable portions and training them part by part. For example, training 
each layer of a network before constructing and training the entire model 
is known to mitigate the vanishing gradient and overftting problems. The 
dropout technique, on the other hand, randomly picks out some nodes in 
the neural net to be adjusted while ignoring the rest; by repeating this pro-
cess, it trains the entire model in a piecemeal fashion. 

3.  Modifying the loss function (i.e., the optimization target) to reduce the degrees of free-
dom. A typical method is to put a cap on the magnitude of parameters when 
one tries to optimize the likelihood or mean squared error. One may, for 
instance, minimize the original loss function plus the sum of squared param-
eters Σ w2

i , so that models with smaller parameter values are favored. Like 
i   

AIC in the previous section, this constrains a model’s degrees of freedom by 
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putting a penalty on parameters (though in this case, what is penalized is not 
the parameter count but their magnitude). This kind of technique is called 
regularization. 

The methods listed here are not exclusive (or exhaustive, needless to say), but 
are generally used in combination. These techniques now allow researchers to 
train even huge deep learning models with millions or billions of parameters and 
achieve high generalization performance, without falling prey to overftting. 

4.4 Philosophical Implications of Deep Learning 

4.4.1 Statistics as Pragmatist Epistemology 

The recent progress of deep learning and the accompanying boom in artifcial 
intelligence (AI) are rapidly changing our everyday life and even the fabric of 
society. Their success prompts a sort of paradigm shift from the traditional 
Bayesian and classical conceptions of statistics. The shift, in a word, is one from 
truth to predictive performance. As we have seen so far, the major goal of 
traditional inferential statistics is to identify the uniformity of nature behind the 
data, or an ideal model of it (aka a probabilistic kind). Prediction is considered 
a subtask of this identifcation problem and is approached indirectly via an 
inference to the probabilistic kind that mediates between the observed and 
unobserved samples (see Figure 1.2). In this sense, one can say that the frst and 
foremost objective of traditional statistics, both Bayes and classical, is to build a 
true and faithful picture of the world. 

In contrast, obtaining a true model is not the primary goal in model selec-
tion or deep learning. Instead of taking models as pictures of reality, AIC and 
other model selection criteria regard models as tools and evaluate their instru-
mental value in terms of their predictive performance under given data (Section 
4.2.4). The same applies to deep learning. True, the universal property of deep 
learning models allows them in principle to represent any complex data-gen-
erating process in the fnest detail. There is no guarantee, however, that models 
can actually be trained to attain the true distribution; indeed, given the vast 
dimensions of the search space and the complexity of the loss functions, an 
exact match is highly unlikely (Goodfellow, Bengio, and Courville 2016, sec. 
8.2.2). This, however, poses no practical problem provided that the models 
demonstrate satisfactory performance in predictive tasks. Again, the focus here 
is on a model’s utility rather than veracity. 

What is the epistemological implication of this shift from truth to prediction 
in contemporary statistics? In other words, what kind of epistemology do the 
theories of model selection and deep learning involve? One natural and sensible 
approach to this question would be to take a cue from pragmatist epistemology, 
which was proposed as an alternative to traditional epistemology toward the 



 

 

 
 

 
 
 
 
 
 
 
 
 
 

130 Model Selection and Machine Learning 

latter half of the 20th century. The traditional epistemology we have discussed 
so far has tacitly assumed the acquisition of truth, understood as a correspon-
dence between our thought and the world, as its primary objective. Both 
internalists and externalists take knowledge as (at least) a true belief and under-
stand justifcation as a means for arriving, in some way or another, at the truth. 
Underneath this epistemological agenda is the conception of cognition as a 
“mirror of nature” which supposedly refects the world as it is (Rorty 1979). 
According to this view, the goal of our cognition is to produce a faithful and 
accurate image of the external world within the mind, like a refection in a 
clear, stainless mirror. Though it may appear natural, Rorty points out that this 
view itself is an unverifable metaphysics, built upon the trite dogma of the 
distinction between subject and object, or between minds and the world. 
Accepting such an epistemological framework inevitably leads us to the skeptical 
aporia of how we can ever know whether our cognition faithfully refects the 
external world or not. Rorty claimed that to shake of this aporia, we need a 
diferent, pragmatist, epistemology. As we have seen, pragmatists have us under-
stand beliefs and concepts in terms of their potential consequences on our 
behavior and practice. Those who believe that glass is fragile and those who 
believe that glass never breaks will likely behave diferently in everyday life and 
get diferent payofs. The latter people may lean their entire body weight on a 
window or try to drive a nail with a piece of glass, and as a result may get 
injured or even lose their life. Such a belief is obviously not pragmatic. On the 
other hand, those who believe that iron is harder and less fragile than glass 
would be better able to attain their end by using a hammer. In this way, beliefs 
have instrumental value, some being more pragmatic than others. Pragmatists 
claim that our beliefs should be evaluated not in terms of their veracity—what-
ever that may be—but rather in terms of this kind of utility. In other words, 
truth is not an intrinsic or primary value of a belief; the “goodness” of a belief 
should be determined not by its closeness to the truth, but by whether or not 
it leads us to desirable consequences in our daily lives or in scientifc practice. 

If, as pragmatists say, truth has no intrinsic value, then the whole concept and 
aim of epistemology must undergo a complete overhaul. It has been customary 
in traditional epistemology to evaluate epistemic systems in terms of their truth-
conduciveness, i.e., how well they allow us to obtain true beliefs. But if the value 
of beliefs is to be measured not by their veracity but by other pragmatic criteria, 
epistemic systems too must be evaluated in terms of their contributions to those 
diverse goals. This leads Stephen Stich, a prominent pragmatist epistemologist, to 
claim that “Cognitive processes . . . should not be thought of primarily as devices 
for generating truths,” but “as something akin to tools or technologies or practices 
that can be used more or less successfully in achieving a variety of goals” (Stich 
1990, p. 131). Indeed, we use our cognitive machinery for various purposes in 
our everyday life and work, such as driving a car through busy trafc, cooking a 
fancy dinner, or gaining territory in a Go game. These tasks all demand 
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sophisticated cognitive processes, but of diferent natures and functionalities; so it 
would be rather unftting to assess them using the same measure of “truth.” Each 
task has its own goals and values, and therefore its own criteria for evaluating the 
cognitive means used. There should be no overarching gold standard applicable 
to all kinds of cognitive processes; rather, the goodness of a cognitive process must 
be judged in terms of how much it contributes to a given concrete task, like 
driving safely, preparing tasty meals, or winning a Go game. 

This kind of pragmatist epistemology appears to ft well with the trend of 
contemporary statistics exemplifed by machine learning. To be sure, model 
selection and deep learning do not dispense with the notion of a true distribu-
tion. The “truth” there, however, is no longer considered to be an ultimate 
goal of inquiry, but rather as an instrumental assumption used to derive efective 
predictive methods and to assess their performance (Konishi and Kitagawa 2008, 
p.  3). The goal of model-building on this view is not so much to obtain a 
faithful picture of the data-generating process as to make successful predictions 
and classifcations. This is the crux of Box’s dictum that we saw in Chapter 1: 
“all models are wrong, some are useful.” “So,” he continues, “the question you 
need to ask is not ‘Is the model true?’ (it never is) but ‘Is the model good 
enough for this particular application?’” (Box, Luceño, and Paniagua-Quinones 
2009, p.  61). This passage embodies the pragmatist spirit that the value of a 
model consists not in its truth, but in its utility in solving concrete tasks. And 
to further back up Stich’s point, the reasons one uses statistical models today 
are not limited to the pursuit of truth. As is well known, deep learning models 
are remarkably successful in a variety of applications, including automated driv-
ing, machine translation, playing Go and video games, drawing and painting, 
music composition and performance, and so on. Accomplishing such complex 
tasks surely requires highly sophisticated cognitive faculties and skills. Such 
cognitive capabilities may be comparable more to the techne we fnd in skilled 
craft-workers, athletes, and artists, rather than to the episteme involved in uncov-
ering the truth or laws of nature. Aristotle said that techne, or art, is evaluated 
not in light of necessary and universal truth, but by its contribution to a given 
end (Nicomachean Ethics 1139a20–1140a20). Likewise, deep learning models are 
assessed with respect to the loss function determined by the technical problem 
they are supposed to solve. But from the pragmatist perspective, there is no 
essential distinction between technical applications and “pure” intellectual 
activities—they are both bona fde forms of inductive inference, evaluated by the 
same, pragmatic, standard. 

4.4.2 The Epistemic Virtue of Machines 

With its emphasis on the pragmatic role of the human as well as machine intel-
lect, irreducible to the search for truth, pragmatism seems capable of doing 
justice to one signifcant aspect of modern statistics that does not fully square 



 

         

132 Model Selection and Machine Learning 

with traditional epistemology. But even if we acknowledge the pragmatist spirit 
at the root of the success and spread of modern machine learning, it is premature 
to conclude that contemporary statistics has completely lost touch with the 
quest for truth. Just as traditional statistics had evolved through both industrial 
applications and scientifc inquiry (see Section 3.3.2), deep learning is also 
beginning to be applied to a diverse range of scientifc research (Bianchini, 
Müller, and Pelletier 2020; Tanaka, Tomiya, and Hashimoto 2021). Machine 
learning is expected to help or even replace human reasoning in handling ever-
increasing data and complex hypotheses in a variety of scientifc disciplines, 
including physics, chemistry, biology, economics, sociology, and even the humani-
ties. Certainly, the primary goal of such scientifc applications is to elucidate 
the phenomena and principles in the domain of inquiry, that is, to attain the 
truth. Iten et al. (2020), for instance, report that a deep learning model has by 
itself rediscovered physically meaningful parameters and laws just from observed 
data, without any input of prior knowledge. Besides such exploratory use, 
machine learning is expected to gradually take over, at least to some extent, 
the role played by traditional Bayesian and classical statistics in the context of 
scientifc justifcation. For instance, one may be able to use a machine learning 
model to judge among diferent scientifc hypotheses vis-à-vis extremely complex 
big data. These applications will not only boost research activities but may also 
change the practice and even the very concept of scientifc investigation. 

This new direction in scientifc research, however, confronts us again with 
the epistemological problem of justifcation that we have discussed throughout 
this book. Machine learning models may well analyze big data impenetrable by 
human understanding and give solutions to complex problems. But can we 
count such answers provided by computers as a piece of “knowledge”? Suppose 
that in the near future, some machine learning model discovers new physical 
laws. Can we then say, with this discovery, that we have extended our under-
standing and knowledge about the physical world, just as we did with the 
discoveries of Newton and Einstein? Or, in more general terms, are discoveries 
and conclusions given by deep learning models epistemologically justifed, and 
if so, in what sense? 

The reliabilist idea discussed in Chapter 3 seems to provide a natural frst 
step to tackling this question. According to reliabilists, beliefs are justifed if 
they are generated from a reliable epistemic process. Now, deep learning models 
do seem to be a highly reliable process, perhaps more so than our own, in 
helping us make appropriate decisions under complex situations. Granted, these 
mechanical “processes” difer from our innate cognitive functions, like vision 
and memory, in that they are external to us. That, however, does not matter 
to reliabilism; for one thing, a large part of our everyday cognitive decisions 
also depend on countless external processes like telescopes and computers. Long 
before the advent of machine learning technology, we humans have incorporated 
external tools to enhance our own cognitive processes. Moreover, seen as 
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epistemic processes, there may not be any intrinsic diference between “internal” 
or innate cognitive organs and “external” deep learning models after all. What 
we usually call “innate” epistemic processes such as our sense organs, memory, 
and reasoning capabilities are all products of evolution and learning—that is, 
traits that have been formed through the optimization processes of natural selec-
tion and repeated trial-and-error.8 Likewise, the cognitive functionality of deep 
learning models is built by a similar optimization process, as we have seen. The 
similarity is particularly striking in the method called generative adversarial networks 
(GANs), which improves the performance of models by subjecting them to 
mutual competition, just like an “arms race” in adaptive evolution. Innate organs 
“internal” to ourselves and “external” deep learning models, then, are in efect 
on a par, insofar as they are both cognitive processes produced through opti-
mization processes. In this light, reliabilism seems well able to accommodate 
deep learning models into its justifcation process as part of our extended cogni-
tive functions. 

If so, the conclusions of reliable deep learning models may well be said to 
be justifed in the externalist sense. That, however, is not the end of the story. 
Recall our discussion in Chapter 3, where we saw that inferences in classical 
statistics are reliabilist processes of justifcation. The key there was the theoretical 
warrant, provided by the mathematical theory of classical statistics, that backs 
up the reliability of tests and other statistical inferences. That is, there is a frm 
theoretical basis on which one can make a principled assessment of the reliability 
of a given test, using the concrete indices of confdence coefcient and power. 
Deep learning, on the other hand, still lacks such a foundational theory that 
would compute the reliability of models in a unifed and a priori fashion. The 
performance of most deep learning models is instead evaluated a posteriori, by 
gauging how well they are able to perform tasks using standard datasets like 
MNIST or ImageNet—one might say, for example, that a new model has clas-
sifed about 95% of the images in a dataset correctly. Arguably, properly per-
formed benchmark tests may be taken as empirical proof of reliability, which 
would to some extent justify conclusions from models that achieve or exceed 
the SoTA (state of the art). These “proofs,” however, must be obtained on a 
case-by-case basis and interpreted relative to a particular model and test set. In 
the absence of a unifed theoretical standard, therefore, the reliability of machine 
learning models is attributed to each individual model in a rather makeshift 
manner. This leads to the “branding” of reliable models, because what is gauged 
by an individual benchmark test is the very model being tested and its charac-
teristic properties. This is evidenced by the fact that deep learning researchers 
often give their models colorful names such as (Goog)LeNet, Alpha Go, BERT, 
and GPT-3 and discuss their performance and reliability under their name or 
brand. Those models have been acknowledged for their reliability and high 
performance in the standard benchmark tests and numerous empirical applica-
tions. What is suggested by all this is that the reliability of deep learning models 
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is understood, at least in the current situation, as a property or skill peculiar to 
individual models. 

What should we make of this idea of reliability as something inhering in 
individual models, and the concept of justifcation based on it? One clue for 
thinking about this question may be found in a recent trend in philosophical 
epistemology called virtue epistemology (Zagzebski 1996; Sosa 2007). Virtue 
epistemology locates the ground of justifcation in the nature or personality of 
epistemic agents, or their epistemic virtue. Let us illustrate the idea with a 
simple example in ethics, where this kind of view originated under the name 
of “virtue ethics.” Ethicists have long disputed over what makes one’s act mor-
ally “good.” Imagine two people who donate to the needy; one donates reluc-
tantly from a sense of duty, while the other donates from an unselfsh, 
philanthropic spirit. Which one is morally better? From a utilitarian perspective, 
as long as their donations bring about the same beneft, there is no moral dif-
ference between the two, regardless of their motives. In contrast, virtue ethicists 
give higher praise to the latter, since that person’s deed comes from his or her 
virtuous mind. According to virtue ethics, an action or behavior is morally 
good when it is a manifestation of an agent’s virtue, such as benevolence, gra-
ciousness, conscience, and so on. 

Returning to epistemology, virtue epistemologists apply this idea and consider 
a belief to be justifed when it is a manifestation of the believer’s epistemic virtue. 
What counts as epistemic virtue difers among theorists, but most often cited 
are perceptual acuteness, memory, inferential capability, curiosity, fairness, modesty, 
and so forth. Although the word “virtue” may sound pompous and somewhat 
preachy to some, there’s actually no implication of the sort: the “virtue” in virtue 
epistemology is no more than the ability or excellence of a person in recognizing 
and understanding things. Virtue epistemologists grant that a belief is justifed 
when it is obtained by such abilities possessed by an epistemic agent. Indeed, 
the way we appreciate an expert’s advice more than a layperson’s opinion in our 
everyday lives as well as in technical issues seems to refect the fact that we 
implicitly adopt such a justifcatory concept. Imagine that I, a complete layman 
about birds, go on a hike with my ornithologist friend and see a bird at a riv-
erside. Suppose I judge that it is a kingfsher (since this very name suggests to 
me that they likely live near a river or sea). My ornithologist friend makes the 
same judgment, but hers is based on her acute eyes as a skilled birdwatcher as 
well as her expert knowledge about the bird’s ecology, environment, and climate 
factors. You might then think that my belief about the kingfsher is not justifed, 
or at least less so than hers. For one thing, while my judgment is just a sheer 
guess, my friend’s is grounded on her expertise or epistemic virtue as an orni-
thologist. It is our general tendency to accept judgments of attentive, smart, 
knowledgeable people as more justifed. Virtue epistemology features such inher-
ent and personal characteristics that we implicitly rely on in our everyday epis-
temological evaluation as the basis of the concept of justifcation. 
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What makes virtue epistemology unique is that it locates the basis of justi-
fcation within the epistemic agent (Sosa 2009, pp. 187–188). Whether a given 
belief is justifed or not depends on the epistemic ability or virtue inherent to 
the agent. This epistemic virtue can be paraphrased as a truth-conducive dis-
position, i.e., a set of properties that leads the agent to the truth in normal 
circumstances (p.  135). Just as sunfowers are disposed to turn toward the sun 
and frogs have a tendency to prey on little moving spots, smart and attentive 
people have a disposition to obtain true beliefs. These dispositions are charac-
teristic abilities inherent to individual sunfowers, frogs, and human beings, 
respectively. Some of these are innate traits that have evolved through the long 
history of each species, while others are acquired through postnatal developmental 
or learning processes; but in either case, they are inherent characteristics belong-
ing to individual organisms. Justifcation, according to virtue epistemology, is 
based on a proper manifestation of such individual epistemic capabilities that 
have taken shape through the historical processes of ontogeny and phylogeny.9 

Can we extend this line of thought and say that properly trained deep learn-
ing models have epistemic virtue? I think we can. By no means does this imply 
that machines have a personality, or that there is no gap between artifcial and 
human intelligence. “Virtue” here is a technical term denoting specifc abilities 
built into individuals through certain optimization processes, no less and no 
more. In this technical, restricted sense, it seems perfectly possible to acknowl-
edge epistemic virtue in deep learning models, acquired through optimization 
processes akin to adaptive evolution and borne out by a set of benchmark tests. 
For instance, SciNet in the aforementioned work of Iten et al. (2020) can dis-
cover physical laws from data, and Alpha Go has the ability to beat a top-level 
professional Go player. The epistemic virtue of a machine is nothing other than 
the epistemic capabilities possessed by these models. The judgments of models 
that have such epistemic machine-virtue, then, should be regarded as justifed 
by the standard of virtue epistemology. In other words, when we accept the 
conclusions of a deep learning model as justifed by its truth-conducive capabil-
ity, demonstrated in benchmark tests, we understand their justifcatory status in 
line with virtue epistemology, that is, in the same sense that we listen to the 
ruling of a fair-minded judge, the diagnosis of a devoted doctor, or the expertise 
of an academic authority. 

The idea of virtue epistemology that seeks the basis of justifcation in personal 
or individual characteristics might appear unscientifc and anachronistic to some. 
Indeed, virtue ethics and virtue epistemology have their roots in Aristotelian 
natural philosophy, where well-being and excellence are explained in terms of 
the manifestation of the natural properties inherent to each individual. Hasn’t 
such a metaphysical worldview been overcome by modern science, which has 
replaced the anthropomorphic conception of nature with mathematical deriva-
tions and calculation from universal laws? Wasn’t it also the replacement of 
experts’ individual skills and knowledge—that is, their intellectual virtue—with 
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publicly accessible and unequivocally assessable numbers that promoted the 
development of more objective and democratic decision-making processes in 
the late modern period (Porter 1996)? If so, our discussion suggests that the 
theory of machine learning, the cutting edge of contemporary science, is in 
one sense resuscitating a premodern worldview that we thought had been 
overcome. This ironic twist, I surmise, is what underlies the sense of amaze-
ment, bewilderment, and anxiety people often feel in the face of the impressive 
successes made by the recent development of machine learning. Deep learning 
models are surpassing conventional technologies on many fronts, but the way 
they work remains impenetrable to objective understanding based on universal 
laws or frst principles, which have long been the ideal of modern science. This 
situation calls for, alongside the scientifc as well as engineering endeavor to 
uncover the fundamental principles governing deep learning models, philosophi-
cal refection on the epistemological nature of such investigations, and on their 
potential implications for the way science is conducted and conceived. The rest 
of this chapter explores these philosophical matters, taking as its lead the kinship 
between deep learning and virtue epistemology put forward in this section. 

4.4.3 Philosophical Implications of Deep Learning 

Why does deep learning work so well? This is a million-dollar question 
that is currently being explored by researchers all over the world, and it 
would certainly be premature to make any judgment at this point. We 
may, instead, step back and ask from a somewhat detached perspective: 
what does understanding deep learning models amount to? What kind of 
discovery or explanation would make us feel we understand them, and 
what are the implications of such understanding for our concept 
of knowledge? 

From the virtue-epistemological perspective introduced in the previous sec-
tion, the understanding of deep learning models consists in the elucidation of 
their virtue or capabilities. Consider how an inquiry into an agent’s epistemic 
virtue would proceed in the case of, say, the study of animal cognition. To 
elucidate the epistemic ability of some animal, we would frst try to identify 
the relevant functions and then seek their physiological bases. If, for instance, 
we are intrigued by how and why bats can prey so well in the dark, we should 
frst identify the peculiar epistemic ability—echolocation—that enables them to 
hunt efectively, and then proceed to examine the physiological structure that 
realizes this function. In the same way, if we are to understand the performance 
of a particular deep learning model, we should frst identify its epistemic virtue 
or feature that contributes to its truth-conduciveness, and then ask which net-
work structure is responsible for this ability. This research strategy corresponds 
to the frst item (i.e., the study of model structure) in our list of the three kinds 
of approaches in machine learning research that we saw earlier (Section 4.3.2). 
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Specifc examples of such structures underlying various epistemic virtues of deep 
learning models would include convolution, resolution networks (ResNet), 
recurrent neural networks (RNN), long short-term memory (LSTM), attention, 
transformer—the list goes on. Identifying and engineering these kinds of mecha-
nisms that contribute to machine-epistemic virtues is the main thread of deep 
learning research that has led, and is still leading, to progress ever since its birth. 

Studies of epistemic virtue aim not only to identify the structure responsible 
for high performance, but also to understand the reason why that particular 
structure leads to good performance. For instance, a recent study suggests that 
deep learning models do their best when the target probability function to be 
learned is piecewise smooth—that is, when it is composed of smooth diferen-
tiable patches, connected by steep clifs or crevasses where the function is non-
diferentiable or even discontinuous (Imaizumi and Fukumizu 2019). This kind 
of theoretical research will help us determine not only the conditions favorable 
to deep learning models, but also adverse conditions, under which they will 
not work reliably or efectively. The latter kind of understanding is also impor-
tant, because deep learning models are known to produce some unexpected 
fascoes. The most striking of such a failure is a phenomenon known as an 
adversarial example (Szegedy et al. 2014). It is known that by adding specialized 
noise unrecognizable to the human eye, one can cause a model to misidentify 
the contents of an image, e.g., to misclassify a fabricated image of a panda as 
a gibbon, though the image seems to us no diferent from the original image 
of the same panda. This technique may be abused: for instance, one might be 
able to mislead self-driving algorithms to make wrong decisions by putting 
specialized stickers on road signs. In order to prevent this from happening, it is 
important to clarify the mechanism of how and what deep learning models 
learn from data (Goodfellow, Bengio, and Courville 2016, sec. 7.13). 

The goal of this kind of research is to justify the judgments of deep 
learning models from an external, third-person perspective, by dissecting 
their epistemic abilities as does an anatomist, as it were. Alternatively, one 
may consider an internal or frst-person perspective strategy that seeks the 
basis of justifcation within deep learning models. Ernst Sosa’s dichotomy 
of knowledge will help us see this contrast. According to Sosa, there are 
two types or varieties of knowledge: one is what he calls animal knowledge, 
and the other is refective knowledge. Animal knowledge refers to the insights 
or actions made possible by the proper working of the epistemic virtue of 
a subject. This includes a frog’s identifying moving fies as prey, a dog’s 
fnding a bone buried in the backyard, and my distinguishing IPA from other 
ales by taste. These count as justifed pieces of knowledge insofar as they 
are proper manifestations of the epistemic virtue of the frog, the dog, and 
myself, so that they (we) can legitimately be said to know the presence of 
the prey, the location of the bone, and the kind of beer I am enjoying, 
respectively. This, however, does not necessarily mean that these 
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cognizers also know how they are able to know what they do. Refective 
knowledge requires this kind of second-order understanding, not just of the 
target fact, but also of “its place in a wider whole that includes one’s belief 
and knowledge of it and how these come about” (Sosa 1985, p. 242). Such 
refection may not be necessary for gaining knowledge itself but proves 
essential if one also wants to know the conditions that guarantee the truth-
conduciveness of the belief-generating process that produced the knowledge 
in question, so that one can guard against potential doubts. Devoid of such 
refective knowledge, if someone had asked me why I knew that the drink 
I’m enjoying is IPA, I would only be able to respond, “because it tasted 
like that.” But a beer-savvy person may be able to explain why it is IPA 
and not other ales by referring to the way each kind of drink infuses our 
gustatory and olfactory senses with its taste and aroma under various condi-
tions. Arguably, a person with such knowledge should be considered to have 
a deeper understanding of beer than I do. 

Given this distinction, what kind of knowledge can we attribute to deep learn-
ing models? It would be hard to deny that they already have some form of animal 
knowledge, and the kind of research along the lines mentioned here will no doubt 
continue to improve this knowledge by identifying its underlying mechanisms. In 
contrast, it is not evident whether they also have or will acquire refective knowl-
edge. Do neural nets know not only what they are recognizing and classifying, 
but also why and how they are making judgments as they do? And are they able 
to share their rationales or justifcatory reasons with us, so that we humans can 
refectively understand their decisions? These are exactly the questions being inves-
tigated under the recent research trend called Explainable Artifcial Intelligence, or 
XAI for short, which studies the accountability or interpretability of deep learning 
models (Adadi and Berrada 2018). Major goals of XAI include identifying the 
criteria used by deep learning models in making decisions as well as the rationale 
that underlies each individual judgment and prediction, and making these open to 
human users in intelligible ways. For instance, Ribeiro, Singh, and Guestrin (2016) 
proposed a method for highlighting the regions of images which a model has used 
to classify objects, while Hendricks et al. (2016) developed a model that explains 
the basis of its decisions in natural language. These studies are intriguing in that 
they have the potential to reveal the justifcation process inherent in deep learning 
models, and thereby shed light on the aforementioned problem of adversarial 
examples. The challenge posed by adversarial examples is the possibility that the 
logic and reasons (called “features”) that deep learning models use in making infer-
ences and judgments may be utterly diferent from those we use in our own 
reasoning. Such a diference in the way of thinking would make it extremely 
difcult, if not completely impossible, for us humans to identify and anticipate the 
circumstances that would cause a model to malfunction. Understanding a model’s 
rationale for its decisions will give us clues as to when such malfunctioning will 
occur and how to prevent it. A refective understanding of deep learning models, 
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therefore, is not only of theoretical interest, but is also of great importance in 
applications. 

This discussion suggests that there are two diferent senses in which we might 
explicate and understand deep learning models. One is to understand a model’s 
animal knowledge, through an analysis of the characteristic architecture that 
underpins the model’s sophisticated cognitive abilities. Just like biologists and 
neuroscientists who seek to uncover the physiological basis of cognitive processes 
in animals and humans, machine learning researchers might seek to identify 
features of a model that contribute to its truth-conduciveness. We indicated in 
Chapter 1 that biological species like frogs or human beings are paradigmatic 
examples of natural kinds, characterized by the physiological properties and 
behavioral tendencies peculiar to each species. It is by classifying a particular 
“thing” in front of us into a natural kind such as a frog or human that we can 
predict and understand its behavior, such as that it will spawn eggs in a pond 
in the spring or that it will display a certain reaction if such-and-such a drug 
is administered. Physiological studies in general are aimed at elucidating the 
making and working of such biological natural kinds. Likewise, a deep learning 
model instantiates a probabilistic kind, a natural kind that specifes a particular 
pattern of inductive problems (see Section 4.3.1). Just as biological natural kinds 
like frogs and humans solve cognitive problems that arise in their respective 
environments, deep learning models are probabilistic kinds that cope with cog-
nitive tasks of their own. And just as frogs and humans have diferent cognitive 
features and environments, diferent deep learning models like GoogLeNet and 
Alpha Go have distinct cognitive architectures and fourish in diferent “habitats.” 
At the same time, diferent models are not entirely diferent: there are some 
versatile modules adopted in a wide range of models built for diferent purposes. 
These universal features are like a machine-analog of homologies, common bio-
logical traits or structures observed in distinct taxa due to their shared evolu-
tionary origin. Examining how these commonalities as well as specifc features 
contribute to the performance of deep models, then, will defne the frst category 
of deep learning research. This line of research follows the same path as other 
natural sciences, progressing through the identifcation and examination of 
relevant natural kinds. 

On the other hand, understanding the explainability and interpretability of 
deep learning models will require a diferent research strategy. The focus of this 
second research category is the refective knowledge of deep learning models, 
i.e., knowledge about how they reason and on what ground they make judg-
ments. Whether such knowledge is attributable to machines should be determined 
not by simply observing their behavior from without, but rather from within, 
by “putting ourselves in their shoes.” Taking a zoological analogy again, this is 
akin to pondering how an animal, say a bat, cognizes its environment, and trying 
to understand “what it is like to be a bat.” As is suggested by the recent studies 
on representation learning, deep learning models are seeing the world in their own 
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way—that is, they are extracting patterns from given information and making 
full use of the acquired patterns for solving cognitive tasks. A striking example 
is an image recognition model that developed a neuron that specifcally responds 
to the image of cats, just by learning from data. This and other cases suggest 
that deep learning models are able to discover what we would call natural kinds 
on their own, and use them to structure the world. As it happens, building good 
representations is known to improve a model’s generalization capability and to 
facilitate the application of a model trained in one domain, say image classifca-
tion, to problems in another domain, say text processing (a procedure known as 
transfer learning). Given that the role of natural kinds is to secure a foothold for 
inductive reasoning and extrapolation across diferent sense modalities by carving 
nature at its real and objective joints, this fnding buttresses our claim here that 
the patterns identifed by models are indeed natural kinds. If so, and if we con-
sider that natural kinds furnish the basic building blocks of our worldview, 
understanding the representations/natural kinds used by machines proves to be 
an essential step toward understanding how deep learning models actually think. 
Do they carve nature as we do, or are they seeing completely diferent natural 
kinds? In Section 4.2.4, we observed that the real patterns that cognizers discern 
may depend on their perceptual sensitivity or amount of data available. In view 
of this, there is little reason to expect that the patterns in the world discovered 
by deep learning models trained with an enormous amount of data coincide 
exactly with those that we tend to consider real. The question, then, is the extent 
and upshot of the discrepancy. If the natural kinds used by deep learning models 
are utterly diferent from ours, can we ever understand their epistemic process 
refectively? And how can we even know whether they use the same natural 
kinds or not in the frst place? 

Philosophically minded readers might notice a similarity between the problem 
we encounter here and Quine’s infamous indeterminacy of translation (Quine 
1960). This thesis puts into question the commonly held idea that there is a 
uniquely correct translation rule between two diferent languages: instead, there 
are always multiple (possibly infnite) translations that are equally good but 
mutually inconsistent. Quine’s argument unfolds as follows. Imagine that you 
are a feld linguist doing research in a tribal community which previously has 
had no interaction with the rest of the world, and whose members speak a 
language utterly unknown to us. Living with those people, you fnd that they 
utter “gavagai” upon seeing a rabbit. Then you reason that “gavagai” in their 
language should mean something like “Lo, a rabbit.” in English. That, however, 
is not the only possibility. Maybe “gavagai” should be translated into a more 
metaphysically perverse sentence like “Rabbithood is instantiated over there.” 
Or maybe what we mean by rabbits is believed to be reincarnations of ancestors 
in that tribe, so the native people may be saying that their ancestors are visiting 
them. To resolve this ambiguity and determine the meaning of “gavagai,” we 
need to take into account the rest of their linguistic activities as a whole. 
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However, Quine argues, there is no guarantee that your best eforts to survey 
their entire linguistic activities will converge to a unique translation manual. 
Other feld linguists may come up with a completely diferent translation manual, 
according to which “gavagai” means an ancestral visit. In this way, “manuals for 
translating one language into another can be set up in divergent ways, all com-
patible with the totality of speech dispositions, yet incompatible with one 
another,” or so argues Quine (1960, p. 27). 

A similar problem of radical translation may arise between machines and us. 
As an example, recall the node in the aforementioned image classifcation model 
that fres exactly when the image contains a cat. Does this model really recognize 
what we call a cat? Maybe so, or maybe it is just responding to the combination 
of cat-like whiskers and ears, or thinking that “cathood is instantiated over 
there,” and so on—the list could be continued indefnitely.10 Note that this is 
not a problem of underdetermination, where we are unable to decide which 
among multiple possible translation rules is the correct one due to insufcient 
data. Quine’s point is more radical and suggests the possibility that there may 
not be an objectively “correct” translation rule, or even a “true semantic con-
tent” which translations aim to reveal. If this is the case, then XAI’s attempt to 
translate the “thoughts” of deep learning models into our natural language would 
be a quest with no defnitive answer. Of course, even without an objective 
answer, we may still tell a story about how they reason. That, however, will be 
just one interpretation, and there can be multiple interpretations that are equally 
good but mutually incompatible. 

This casts serious doubt on the search for the explainability of deep learning 
models and their refective understanding. If we can never know “what AI is 
really thinking,” why bother prying into it? We can confrm through benchmark 
tests that deep learning models have high performance/animal knowledge—what 
else do we want? Skilled researchers and engineers may well be able to get an 
idea about a model’s performance by glancing at its benchmark scores or other 
indices, and if necessary, the source code. It is understandable, then, that they 
do not feel any need for explainability, particularly if by itself it does not help 
them improve the performance of their models. 

The story changes, however, when it comes to applications. When applying 
a particular model to solve any concrete problem in, say, business, policy mak-
ing, social planning, or scientifc research, one always needs to convince the 
stakeholders (one’s boss, government ofcials, politicians, reviewers, etc.) of the 
appropriateness of the method. And as Porter (1996) has pointed out, a demand 
for accountability always arises from those external parties. From a practitioner’s 
standpoint, what matters most is not some esoteric details, but whether a given 
deep learning model is efective in the task at hand, and possibly more impor-
tantly, whether it is free of unintended glitches. This is nothing but the problem 
of justifcation. Machine learning researchers may respond to such worries by 
citing a model’s benchmark scores or past successful cases, trying to assure their 
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clients that these scores confrm the model’s truth-conduciveness. But to the 
eyes of practitioners, these scores are nothing more than currencies within the 
machine learning community. What matters to them is whether the method is 
safe and efective in this or that particular task. This is Humean skepticism, and 
for that very reason one cannot preach it down logically; moreover, it cannot 
be dismissed as an unfounded fear either, given the actual reports of adversarial 
examples.11 The only thing one can do is tell a story which would describe 
how and what kind of assumptions may possibly mitigate the skepticism. Tra-
ditional statistics aimed to answer the skepticism by framing a given inductive 
problem in terms of a natural kind (statistical model) and by deriving various 
estimation methods from it (Chapter 1). Since this posited natural kind remains 
a conjecture and can never be fully confrmed, and the assumption itself is 
deemed to be “wrong” anyway (Box, Luceño, and Paniagua-Quinones 2009), 
this in fact is a sort of metaphysical story. But at least it has proven to be a 
useful story, in that it explicates the conditions that would justify our inductive 
practices. On the other hand, the prohibitive complexity of both the natural 
kinds and tasks in deep learning precludes any hope for such deductive explana-
tions. Under this situation, the explainability of deep learning models will 
hopefully provide a means to respond to the external demand for accountability. 
For this reason it cannot be easily dismissed, even if it turns out to be a difcult 
endeavor that lacks an objective, uniquely correct answer. 

Further Reading 

Anderson (2008) is an advanced undergraduate or graduate-level introduction 
to the theory behind AIC and other information criteria. See Konishi and 
Kitagawa (2008) for a more theoretical exposition. The philosophical implica-
tions of AIC have been explored by Forster and Sober (1994) and Sober (2008). 
Kelleher (2019) and Krohn, Beyleveld, and Bassens (2019) are accessible guides 
to the core ideas behind deep learning that require little mathematical back-
ground, while Goodfellow, Bengio, and Courville (2016) is a standard reference 
with theoretical details. Pragmatist epistemology is championed by Stich (1990). 
Virtue epistemology is succinctly summarized by Battaly (2008). 

Notes 

 1.  One might fnd it odd to talk about a “prediction” of what is known to have hap-
pened. However, one can pretend as if the actual data has not been observed, and  
consider which parameter values would best predict the outcome that happened to  
obtain in the real world. The likelihood measures the predictive ability of a hypothesis  
in this counterfactual sense. 

 2.  For a model M(θ ) characterized by the parameters θ, the MLE given some data x is  
ˆ˜̃̂ ° arg max˜̃ , and the model’s maximum likelihood is . P( ;x M ( )˜̃ ) ( )M ˜ P ( ;x M ( )°° )
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3. Premature, because we did only 10 tosses. The MLE converges to the true value as 
the sample size increases. It also has other desirable properties, like asymptotic nor-
mality, optimality, and efciency (Wasserman 2004, sec. 9.4). 

4. The method is often called “regression” when the predicted variable Y is continuous, 
and “classifcation” when it is discrete. But in this book, we use “regression” for both 
cases. 

5. Depending on the context, explanatory variables are also called independent variables, 
regressors, covariates, etc., while response variables are called dependent/objective variables, 
regressands, targets, etc. Although independent/dependent in particular is a common 
moniker, we avoid this terminology because it may erroneously suggest that explana-
tory variables must be probabilistically independent from each other. 

6. Of course, this does not mean that MLEs cannot be tested. 
7. A particularly important assumption is that the set of candidate models contains the 

true model (i.e., the probability model itself ). This condition is dropped in a more 
general criterion (called TIC) studied by Takeuchi (1976) and Stone (1977). 

8. Adaptive evolution is often likened to hill-climbing on a ftness landscape, where the 
ftness of an organism is determined as a function of its traits and environment. In 
deep learning, ftness corresponds to a model’s likelihood or predictive accuracy, while 
traits correspond to parameters. Natural selection, then, is a kind of optimization 
process of adjusting traits (parameters) to increase ftness (likelihood). I analyzed this 
analogy between biological evolution and machine learning elsewhere (Otsuka 2019). 

9. This naturally leads to the question of what counts as a “proper” manifestation of a 
capacity. Sosa analyzes this notion in terms of his concept of aptness. Another approach 
would resort to the evolutionary history of the cognitive trait and relate it to what Mil-
likan (1984) calls proper function. But we will not go further into this problem here. 

10. Indeed, a recent study suggests the possibility that many deep learning image recogni-
tion models are tacitly using background information in object classifcation (Xiao 
et al. 2020). Hence, it is a real possibility that what they call a “cat” turns out to be 
what we call “a typical background of cat pictures.” 

11. Indeed, adversarial examples can be thought as a real-world case of Wittgenstein’s 
notorious rule-following paradox. 



 

5 
CAUSAL INFERENCE 

As we have discussed so far, modern statistics has approached the problem of 
induction from a probabilistic perspective, framing it as a matter of predicting 
unobserved phenomena via what we have called probabilistic kinds. But predic-
tion is not the sole aspect of inductive reasoning. In this chapter we change 
gears and take an alternative, causal, perspective. Causal relationships are part 
and parcel of everyday as well as scientifc inductive reasoning. If we predict, 
for instance, that vegetable prices soar after droughts, that is because we believe 
that precipitation afects crop growth. In this way, we often resort to a causal 
relationship to deal with an inductive problem. Indeed, Hume notoriously 
blurred the distinction between induction and causality, taking the justifcation 
of inductive reasoning and the confrmation of causal relationships as two sides 
of the same problem. This may sound like comparing apples and oranges to 
students who have taken a modern statistics course, in which we are routinely 
warned that correlation is not causation. The admonition is of course well-taken 
and true; but nevertheless, probability and causality are not irrelevant to each 
other, and identifying their exact relationship is the main focus of statistical causal 
inference, which has made signifcant progress over the past half-century in 
developing various methods for inferring unknown causal relationships from 
observational data alone, without resorting to experiments. What is the true 
nature of this triadic relationship between induction, probability, and causality? 
This chapter addresses this question by taking the same approach we have 
adopted throughout this book, that is, through semantic, ontological, and epis-
temological analysis. What does it mean for something to cause something else? 
What kind of ontological assumptions are implied in such a statement, and what 
kind of method would enable us to know such entities? Through these 
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questions, this chapter aims to expose the philosophical implications of statistical 
causal inference. 

5.1 The Regularity Theory and Regression Analysis 

The canonical place to begin an inquiry into causality is, again, Hume. As 
mentioned previously, for Hume the problem of induction was the problem of 
causality. What, then, is causality? According to Hume, it is a relationship that 
satisfes the following three conditions: 

1. The cause and efect are spatiotemporally contiguous to each other. 
2. The cause temporally precedes the efect. 
3. There is a constant conjunction between the cause and efect. 

When a cue ball hits another ball at rest and sets it in motion, the two balls 
must be spatiotemporally contiguous at the moment of collision, and the motion 
of the cue must precede that of the other. Moreover, this phenomenon—in 
which a ball at rest is set into motion after collision—is observed constantly 
and repeatedly. Hume claimed that these three conditions are all there is to 
causal relationships. In particular, he denied any further specifcation of causal 
relationships as redundant and meaningless, such as the commonly held opinion 
that the cause must have some sort of “power” of bringing about its efect, or 
that there is a “necessary relationship” between the cause and efect. These 
common ideas frequently appear in our causal talk, but according to Hume, 
they have no empirical basis. All we observe in causal relationships is a constant 
succession of efect-event after cause-event; we never observe anything like the 
“power” of a cause that allegedly makes the efect happen, or any kind of 
“necessity” between the two events. Hence, insofar as we remain within the 
realm of data and experience, as Hume thought we should, causal relationships 
are to be characterized by the above three conditions, and nothing more. 

The Humean conception of causality sketched above falls under the rubric 
of the regularity theory of causation. A causal relationship, according to this theory, 
is nothing but a certain sort of regularity between events. One way to cash out 
this regularity is to resort to the notion of statistical dependence between random 
variables (Pearson 1892). As we saw in Chapter 1, random variables X and Y 
are dependent if there are values x, y of these variables for which P(x|y) ≠ P(x). 
Let us denote the independence of random variables X and Y under probability 
function P by X ⊥

P
Y, and their dependence by X . Then Hume’s condi-

tion of constant conjunction can be written as X . But even if we put 
aside the other two conditions, this alone does not sufce to establish a causal 
relationship between X and Y, for the dependence may also arise due to a 
common cause of the two. Lynda always sufers from headaches when the scale 
on her barometer is low, that is, Lynda’s headaches and the barometer reading 

YP⊥ 
YP⊥ 



 

  

  

 

  

   

146 Causal Inference 

are correlated; but this is just a spurious correlation caused by a common cause, 
atmospheric depression. Such spurious correlations can be ruled out by condi-
tioning on the common cause, also called a confounding factor or confounder. If it 
is atmospheric depression and not her glancing at the barometer that is causing 
Lynda’s headache, then no correlation will be observed between the barometer 
reading and Lynda’s headache on days with the same pressure. Denoting the 
confounding factor (here, the atmospheric pressure) by Z, this means 

P x y z| , ) = P x z )( ( | 

holds for all values x, y, and z. If this holds, we say that X and Y are condition-
ally independent given Z, or that Z screens-of Y from X, and write X ⊥

P
Y|Z. 

With this, we can tentatively rephrase the regularity theory as the claim that 
there is a direct causal relationship between X and Y if and only if X ⊥ PY  and 
there is no confounding factor Z such that X ⊥

P
Y|Z. This defnition of cau-

sality is reductionistic, in the sense that it aims to replace causal relationships 
with probabilistic language. That is, it defnes causal relationships to be nothing 
more or less than a sort of probabilistic relationship of dependence. Then, in 
order to understand causality we won’t need to introduce any further “entities” 
beyond our familiar probability models defned in Chapter 1. In this way, the 
regularity theory reduces the concept of causality to the concept of probability, 
both semantically and ontologically. 

The ontological reduction, if possible, is good news for the epistemological 
project of discovering causal relationships. For if causal relationships are nothing 
but a sort of probabilistic relationship, no more than familiar statistical methods 
are needed to identify them. The foremost candidate for such methods is regres-
sion analysis. In common practice, a regression model of a given target variable 
Y takes the putative causes and confounding factors X

1
, X

2
, . . ., X

n
 of Y, often 

called covariates, as the explanatory variables. The simplest linear regression model 
that ignores interactions among causes will have the following form: 

y ˜ ˛ x ° ˛2 2x °  ° ˛ x °  ,1 1  n n  

where ϵ is an error term that follows some probability distribution, and each 
parameter β

i 
gauges the impact of the ith factor X

i 
on the efect Y. The param-

eters can be easily estimated using standard regression analysis. In particular, if 
one of the parameters is inferred to be zero (that is, the hypothesis that it is 
zero has a high posterior probability, or cannot be rejected by a statistical test), 
we may conclude that the corresponding factor is not a direct cause of Y. The 
advantage of regression analysis is that it can simultaneously address the problem 
of confounding. Incorporating a variable, say X

i
, into a regression model amounts 

to conditioning on X
i
. Hence, even if X

i
 confounds Y and X

j
 (that is, even if 

X
i 
is a confounder between Y and X

j
), an estimate of β

j 
will refect the (partial) 
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correlation relationship between X
j
 and Y free from the efect of X

i
, that is, the 

statistical association that remains after X
i
 is held fxed. We noted above that a 

causal relationship between X and Y according to the regularity theory requires 
X ⊥ PY  and the absence of a confounding factor Z such that X ⊥

P
Y|Z. Hence, 

if one wants to know whether X
j
 causes Y in this sense, all one has to do is 

run a regression analysis that includes all potential confounding factors in the 
covariates, and see if β

j
 is zero or not. 

Regression analysis has been one of the standard methods for the study of 
causal relationships, especially in cases where direct experimentation is infeasible 
or difcult. The carcinogenic risk of smoking, for instance, has been confrmed 
by regression models that consider, in addition to smoking history as the primary 
explanatory variable, various putative confounding factors such as age, family, 
occupation, genetic factors, and so on. Records of such actual applications may 
be taken to vindicate the regularity theory as the correct understanding of cau-
sality. However, the theory has also been challenged on several fronts. The frst 
issue is that regression analysis addresses just one among the three Humean 
conditions, namely constant conjunction, and says nothing about spatiotemporal 
contiguity or temporal succession. Since the probabilistic relation of dependence 
is symmetric as we saw in Chapter 1, a nonzero regression coefcient alone 
does not tell us whether X causes Y or vice versa. Even if we set aside this 
problem of directionality, the identifcation and selection of covariates poses 
practical as well as conceptual challenges. In most cases, it is not evident at all 
which factors should be included in a model as covariates. In order to correctly 
identify a causal relationship, the covariates must cover all the possible confound-
ers; but what can confound, say, smoking history and the risk of lung cancer? 
Even with our most painstaking and extensive search for confounders, there 
may still be ones that are out of reach of even our wildest imagination; and for 
that reason, any conclusion from a regression model must remain at best tenta-
tive. Moreover, there are variables that should not be included in a regression 
model. If the variables of our interest Y, X respectively have distinct causes C

Y
, 

C
X
, which in turn have a common efect E, so that the causal structure has the 

form Y ← C
Y 
→ E ← C

X 
→ X in the language of causal graphs we will see 

shortly, then the middle E should not be included as a covariate in a regression 
model. This kind of causal structure is called an M-structure (Pearl 2009); in 
such a case, conditioning on E creates a spurious correlation between Y and X 
(see Section 5.3.1 for an explanation of why this happens). 

The difculty of covariate selection is well-illustrated by the infamous 
phenomenon of Simpson’s paradox (Simpson 1951), which vividly shows that 
the statistical association between two variables may change or even be reversed 
depending on the variables one conditions on. Let us explain this with an 
actual study of gender bias among graduate school admissions to UC Berkeley. 
In 1973, about 44% of male applicants to the university were admitted, whereas 
the admission rate for female applicants was just 35%, which is signifcantly 
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lower. This led to the suspicion that the university was discriminating against 
women. A closer look at each department, however, revealed that in the 
majority of departments, women were more or at least equally successful 
compared to men. At frst sight this is puzzling: female applicants fared better 
(or at least not worse) than male applicants in each department, but worse at 
the entire university level. This apparent paradox, however, is no real paradox; 
the truth was that women tended to apply for relatively competitive depart-
ments with few seats, which resulted in a larger proportion of women who 
were not admitted in the entire pool of applicants (Bickel, Hammel, and 
O’Connell 1975). Turning our eyes to the causes of this apparently paradoxical 
phenomenon, we observe that in this case the gender X afected admission Y 
in two ways. One is a direct infuence, where being a woman contributed 
positively to admission (because women tended to fare better than men in 
admission). The other is an indirect infuence through the applied department 
Z, where being a woman negatively afected admission (because women tended 
to apply for competitive departments). Hence, if we want to judge whether 
there was discriminatory practice, i.e., know whether gender had a direct 
infuence on admission, we should condition on the applied department Z to 
remove the second (indirect) efect. This diagnosis, however, presupposes that 
we already know the aforementioned causal mechanism, or at least have it in 
mind as a hypothesis. In the absence of such foresight, or if there are yet 
other unknown factors, there is no telling which variables should be included 
as covariates. 

All of what we have seen here is an epistemic problem. What is more, 
covariate selection also raises a conceptual challenge to the regularity theory. 
We noted that the reductionistic defnition of the regularity theory identifes a 
causal relationship with a certain kind of probabilistic relationship. For such a 
reductionistic enterprise to succeed, the defniens must not involve any causal 
concepts, for otherwise the defnition cannot claim to have reduced causality 
to probability, or replaced the former with the language of probability. What 
we have just seen, however, is that an appropriate selection of the covariate Z, 
which plays a crucial role in the regularity theorist’s defnition of causality, 
presupposes knowledge of the very causal relationship being defned. For one 
thing, the fact that Z is or is not a confounder, or part of an M-structure, is 
nothing but a causal feature of the variable. The regularity theory’s characteriza-
tion of causal relationships, then, hinges on the very notion it tries to defne, 
and for this reason it cannot claim to have successfully defned causality solely 
in terms of probability. The failure of this semantic reduction suggests the pos-
sibility that causal relationships are not probabilistic relationships, or what we 
have been calling probabilistic kinds, after all. This is not just a possibility—as 
a matter of fact, causality is not probability. But what is it then? To see this, we 
need to consider counterfactual situations—in other words, not just the actual 
world, but also possible worlds. 
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5.2 The Counterfactual Approach 

5.2.1 The Semantics of the Counterfactual Theory 

To explore an alternative strategy to the regularity theory, let us think about 
what we really mean when we make causal claims. Causal statements are ubiq-
uitous both in our everyday life and scientifc contexts. Statements like “an 
asteroid impact caused the extinction of dinosaurs,” or “you got a cavity because 
you ate too many candies” are typical examples of statements that claim causal 
connections among the events involved. In so claiming, we are not necessarily 
trying to establish a regular pattern between the relata. For one thing, it won’t 
make much sense to talk about a regular connection between the meteorite 
impact and the extinction of the dinosaurs, which presumably happened only 
once in the earth’s history. Rather, what we mean when we make these causal 
statements should be something like: “Were it not for the asteroid impact, the 
dinosaurs would have continued to thrive,” or “If you had refrained from eating 
candies, you would not have had a cavity.” These are counterfactual statements, 
some of which we have already encountered in Chapter 3. Counterfactuals, as 
we saw there, have us imagine how things would have developed in non-actual 
situations, and in this respect they are to be distinguished from ordinary con-
ditionals of the form “if A then B,” which deal with regularities holding in the 
actual world. 

The philosopher David Lewis, whom we met in Chapter 2, claimed that 
such counterfactual thinking is what characterizes causal relationships, and he 
proposed the counterfactual theory of causation (Lewis 1973).1 According to this 
idea, E causally depends on C when the following two counterfactual conditions 
hold: 

(L1) If C were true, E would also be true. 
(L2) If C were not true, E would also be non-true. 

Also, if there is a fnite sequence of events D
1
, D

2
, .  .  ., D

n
 between C and E 

such that each term causally depends on its predecessor, i.e., D
1 
causally depends 

on C, D
2 
on D

1
, . . . , and E on D

n
, then C is said to be a cause of E. In our 

following analysis of causation, however, we will ignore this kind of sequence 
and focus on the causal dependence between just two events, stipulated by 
conditions (L1) and (L2). 

Immediately noticeable in Lewis’s defnition of causality is its afnity to 
Nozick’s two counterfactual conditions of knowledge that we saw in Chapter 
3. Indeed, just like in Nozick’s treatment, the truth conditions for Lewis’s 
counterfactual conditions (L1) and (L2) are stipulated in terms of possible world 
semantics (Section 3.3.2). In particular, (L1) “If C were true, E would also be 
true” is true in the actual world when either 
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(i) C does not hold in any possible world, or 
(ii) both C and E hold in some possible world which is closer to the actual world 

than any possible worlds in which C holds but not E. 

The condition (i) is a technical proviso and can be ignored here. More substantial 
is (ii). When (L1) is making a counterfactual speculation, by assumption C does 
not hold in the actual world. But (ii) demands that there is some possible world 
in which C, and also E, hold. Call such a world an exemplary-world. Not all 
possible worlds are exemplary; there are worlds where C holds but not E. Call 
them counter-worlds. But as we noted in Section 3.3.2, we won’t have to count 
these worlds as counterexamples if they are too distant from our actual world. 
The truth condition (ii) of the counterfactual statement captures this intuition 
and declares (L1) to be true if the exemplary-world is similar to the actual world 
than any counter-world. Likewise, the truth condition of (L2) can be stipulated 
by reversing this argument, that is, by replacing C, E above with their negations 
¬C, ¬E. 

Let us apply Lewis’s defnition to a causal statement, “Eating sweets causes 
a cavity.” For this to be true, (L1) must hold—i.e., for a person who does not 
have a sweet tooth, the counterfactual “If she had eaten a lot of sweets, she 
would have had a cavity” must obtain. This requires that there is an exemplary-
world in which she eats a lot of sweets and gets a cavity. Yet there may be other 
possible worlds where she is fortunately free from cavities despite her high-sugar 
diet. But suppose that these worlds are rather diferent from the actual one, in 
that, say, she brushes her teeth really carefully, or fuoride has been added to 
tap water. In this case, these worlds should not be counted as counterexamples, 
and (L1) is judged to hold. The next requirement is (L2), that is, for a person 
who does have a sweet tooth, it must be the case that “Had he not eaten lots 
of sweets, he would not have had a cavity.” The counter-world in this case is 
one where that person unfortunately gets a cavity despite his sugar-free diet. 
But suppose again that these worlds are all quite diferent from ours, in that he 
does not brush his teeth at all, or cavity-causing bacteria are much more viru-
lent, while the exemplar-worlds in which he does not get a cavity are very 
much like the actual world except for his preference for sweets (and the absence 
of cavities). If that is the case, (L2) holds. And if the two counterfactual condi-
tions (L1) and (L2) both hold in this way, eating sweets is deemed to be a cause 
of cavity. 

Although the counterfactual theory may look a bit complicated at frst sight, 
it seems to capture well our intuitions about causality; that is, it seems to give 
a good semantics of causal statements (readers are invited to try it out with 
some examples of their own).2 At the same time, however, it gives rise to an 
epistemological problem. For one thing, we are tied to the actual world by 
defnition, and are never able to peep into other possible worlds and check how 
things are going there. If so, how can we actually confrm the truth or falsity 
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of the conditions (L1) and (L2), and judge one event to be a cause of another? 
Problematically, the counterfactual theory remains silent to this question—it 
may provide us with a good semantics of causation, but no epistemology. In 
what follows, we will take up this epistemological challenge and search for 
statistical methods that would allow us to probe into possible worlds. 

5.2.2 The Epistemology of Counterfactual Causation 

Statistical Tests and Causal Inferences 

Is there a way to explore possible worlds using data available in the actual world? 
One possible clue to this question might be found in our discussion of hypothesis 
testing in Chapter 3. There, we observed that statistical hypotheses represent 
possible worlds, and that a test provides us with an empirical procedure for 
deciding which possible world is the actual world we live in. And as we previ-
ously noted, Nozick’s two counterfactual conditions that embody the logic of 
statistical tests have a close resemblance to the Lewisian defnition of counterfactual 
causality. This suggests that we pursue the possibility of making use of a method 
similar to statistical testing to determine the truth value of causal statements. 

To spoil the conclusion, this idea does not work out. But it is not wide of 
the mark either. Statistical tests and causal inferences do have something in 
common; indeed, one could even say that statistical tests are a kind of causal infer-
ence. Since identifying the commonality and diference between the two will 
serve to highlight the distinctive nature of causal inference and the challenges 
it poses, it will be worthwhile to make a brief detour here and look at their 
subtle relationship. 

Let us begin by recalling that a statistical test is nothing but a function which, 
given data, determines whether or not we should reject a null hypothesis (Sec-
tion 3.2). Let R

0 
stand for the rejection of the null hypothesis, and H

1 
for the 

proposition that the alternative hypothesis is true (i.e., the null hypothesis is 
false). What we can confrm from the data is either R

0 
or ¬R

0
, and from this 

information we want to judge whether or not H
1 
holds. In order to make this 

judgment in the classical statistics framework, we need to evaluate the reliability 
of the testing process. The reliability is measured by the extent to which Nozick’s 
two conditions are satisfed: 

(N1) If H
1 
were true, it would be the case that R

0 
(i.e., the null would have 

been rejected). 
(N2) If H

1 
were not true, it would not be the case that R

0 
(i.e., the null would 

not have been rejected). 

The extent to which these conditions are met is numerically gauged by the 
power and confdence coefcient of a test, respectively. Comparing these two 



 

 

 

152 Causal Inference 

conditions with Lewis’s defnition of counterfactual causality, we note that they 
are nothing but the conditions for H

1 
to be a cause of R

0
. Hence, the following 

equivalences hold: a test is reliable ⇔ the Nozick conditions hold ⇔ the Lewis 
conditions hold ⇔ H

1 
is a cause of R

0
. This leads us to conclude that the 

condition of a reliable test is that the test establishes a strong causal relationship 
between H

1 
and R

0
, so that if the cause H

1 
holds, so would the efect R

0
; and 

if H
1 
does not hold, neither would R

0
. This reinterpretation allows us to identify 

a statistical test with a kind of causal inference that infers the presence or absence 
of the cause H on the basis of the observed efect R or ¬R .

1 0 0 

The analogy between a statistical test and an inference to causes should 
become more intuitive if we consider the following example. Consider a fre 
alarm, whose purpose, of course, is to notify the occurrence of fre by emitting 
a warning sound. When the alarm goes of, we infer the presence of a fre, and 
otherwise we assume everything is normal. It is intuitively evident that the 
reliability of this inference depends on the strength of the causal relationship 
between fre and the alarm. A good alarm is one that goes of when, and only 
when, there is a fre. This requirement is met when the device establishes a 
strong causal connection between fre and the sounding of the alarm. A statisti-
cal test is like a fre alarm, which aims to establish a strong causal connection 
between the fact (H

1
) and the rejection (R

0
) of the null hypothesis, instead of 

fre and the alarm sound. In both cases, it is the presence of a stable causal 
process that allows us to safely trust the process. 

A statistical test, therefore, can be regarded as a kind of causal inference that 
infers a cause from a given efect.3 The crux of testing theory is to make this 
inference as reliable as possible, by constructing a frm causal connection between 
them. But the very point of “construction” reveals the inadequacy of statistical 
tests for the present purpose of confrming a causal relationship. Why? Because 
our objective, recall, is to determine from the data whether or not the Lewisian 
conditions (L1) and (L2) hold. That is, the presence or absence of a causal 
relationship between C and E is yet unknown—it is the very target we are 
trying to know. By contrast, testing theory begins by presupposing a causal rela-
tionship in the form of a statistical model. Using a certain test method is tan-
tamount to assuming a certain causal connection between the facts and judgments. 
On the basis of this connection, one infers the truth or falsity of the hypothesis 
as a “cause” from the decision of rejection as an “efect.” And, as we have 
discussed in Chapter 3, testing theory remains silent as to the veracity of this 
assumption, or at least, it does not assess its veracity vis-à-vis observed data. All 
that tests do is infer a cause from an efect by virtue of a causal relationship 
that is posited a priori; it does not examine the presence or absence of this causal 
relationship itself. But our present concern is exactly this latter question, i.e., 
whether there is a causal relationship between one event and another to begin 
with. “Presupposing” such a relationship as tests do is just begging the question. 
What we are after is a methodology that infers this relationship from the data 
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without assuming it; and for that we need to search somewhere other than 
statistical testing. 

Potential Outcomes and Randomization 

So let us shift gears and search for another path. Maybe we should frst try to 
identify what kind of data would be required in order to verify Lewis’s two 
conditions (L1) and (L2). To make things specifc and easy to imagine, we stick 
to our example in this section and let X stand for “eating sweets” and Y for 
“having a cavity.” Each subject in our dataset is observed to be either X or ¬X, 
and either Y or ¬Y. What we want to know is the answers to the following 
two counterfactual questions: 

1. Would those observed to be ¬X (not eating sweets) have been Y (have a cav-
ity) if they were instead X? 

2. Would those observed to be X (eating sweets) have been ¬Y (have no cavity) 
if they were instead ¬X? 

If we can give a positive answer to these questions for a large proportion of the 
subjects, (L1) and (L2) would be considered to be satisfed, and we could con-
clude that X is indeed a cause of Y. The problem, however, is that answers to 
these two questions can never be determined empirically, due to their coun-
terfactual nature. If one person was observed to be X, then our epistemic access 
to a possible world in which that person is ¬X is barred forever. You may well 
be able to imagine a world in which I don’t like sweets, but given that I do like 
sweets in the actual world, you, or any one of us who lives in this world, can-
not observe that possible world. It then appears that causal inferences are trying 
to do the impossible, by asking questions that can never be answered within 
the confnes of the actual world. This apparently insurmountable difculty has 
been called the fundamental problem of causal inference (Holland 1986). Paraphrased 
philosophically, the problem points to the metaphysical impossibility of observing 
a possible world from the actual world. 

But we should try to press forward rather than get stuck in a metaphysical 
swamp. Let us consider X and Y to be random variables with possible values 1 
and 0, standing for true and false, respectively. We further introduce another 
set of random variables Y

0
 and Y

1
, where Y

0
 represents the value of Y an individual 

would exhibit if that individual had been registered X = 0 (e.g., the presence or 
absence of a cavity if one were not a sweets lover), and Y

1 
represents the value 

of Y an individual would exhibit if that individual had been registered X = 1 (the 
presence or absence of a cavity if one were a sweets lover). Y

0 
and Y

1
, therefore, 

denote potential states of Y that would be realized depending on the status of 
X, and for this reason are called potential outcomes. Note that the value of Y

0 
can 

be observed only for those who are registered X = 0; for others (individuals 



 

 

 

 

 

 

  

154 Causal Inference 

TABLE 5.1 For each subject, only one of two potential outcomes Y
0
, Y

1 
can be observed; 

the value of the other is always missing (denoted by “−”). 

Subject A B C D E . . . 

X 1 0 0 1 1 . . . 

Y
0 

- 0 1 - - . . . 

Y
1 

1 - - 1 0 . . . 

with X = 1), it is only defned and never observed. Philosophically speaking, 
the value of Y

0 
for individuals with X = 1 is realized only in some possible 

worlds diferent from ours; statistically speaking, it is always missing in the actual 
world. In general, for each person we can observe at most either Y

0 
or Y

1
, but 

never both; there is no way to identify the value of Y
0 
for X = 1 individuals, 

or that of Y
1 
for X = 0 individuals (see Table 5.1). With this setup, the funda-

mental problem of causal inference can be paraphrased as the problem that one 
of the two potential outcomes always has a missing value. 

Using the potential outcome notation, the fulfllment of Lewis’s two condi-
tions for a particular person (so that that his/her being x is indeed a cause of 
his/her being y) can be expressed as Y

1 
= 1 and Y

0 
= 0. In other words, 

Y
1 
− Y

0 
= 1, for that person. The mean of this diference 

 °Y ˜Y ˝  ° ˛  Y (5.1)˛ Y ˜ ° ˛1 0 1 0 

then represents the extent to which the causal relationship in question holds in 
a population. This is called the average treatment efect, and if it is closer to 1 we 
can think that X is indeed a cause of Y in the population. However, since at 
least one of Y

0 
and Y

1 
is always missing for any individual for the reason discussed 

above, the aforementioned mean (Equation 5.1) cannot be calculated or estimated 
directly from data. What we can estimate are the mean of Y

1 
given X = 1 and 

the mean of Y
0 
given X = 0, simply by averaging the values of Y for those 

individuals observed to be X = 1 for the former and X = 0 for the latter. 
Hence, the diference of the conditional expectations 

 Y X ˜ 1  | ˜ ˛° | ˛ ˝ °Y X  0 (5.2)1 0 

is estimable from the data. If, therefore, this conditional mean (Equation 5.2) 
matches the unconditional mean (Equation 5.1), we may circumvent the fun-
damental problem and infer causal efects from observed data. 

Under what circumstances, then, do they coincide? Evidently it is when 
˜ °0 ˜ 0 ° ˜ °Y1 1 ° . This holds true if X and Y

i
 Y ˛  Y |X ˛ 0  and  ˛  ̃ Y |X ˛ 1 
are independent, for i = 0, 1 (Chapter 1).4 Unfortunately, however, there is no 
reason to expect this independence to hold. The latter independence P(Y

1
) = 
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P(Y
1
|X = 1), for example, claims that the probability that actual sweets lovers 

develop a cavity is equal to the probability that a random person would have a 
cavity if they had been a sweets lover. But those who like sweets do not just 
regularly eat sugary foods; they may also tend to have additional unhealthy 
dental habits like drinking soda or frequent snacking between meals. In the 
presence of these confounding factors, the chance of having a cavity among 
those who are actually confrmed to eat sweets, P(Y

1
|X = 1), may be higher 

than the chance that randomly chosen people who are “turned into” sweets 
lovers develop a cavity in a possible world, namely P(Y

1
). If so, X and Y

1 
are 

not independent, and given the ubiquity of potential confounding factors (see 
the discussion in the previous section), we can’t just assume the equality of the 
above two means (Equations 5.1 and 5.2). 

Is there a way out of this impasse? Yes. One way is to conduct an experi-
ment in such a way that makes the variables independent. We can imagine, for 
example, an experiment in which a coin is tossed for each subject, and if it 
lands on heads, we ask the subject to eat sweets every day, and if it lands on 
tails, we ask them to abstain from any sugary food. Since the coin toss is ran-
dom, X in this experiment would be independent from any other variables, 
including Y

0 
and Y

1
. This is the core idea of Fisher’s famous randomized control 

trial, or RCT for short. RCT randomly decides whether subjects undergo the 
treatment in question (in this case, eating sweets every day) or go into the 
control group, and then compares the means of the target variable (the rates of 
cavity) between the treatment/control groups. If the diference is signifcant 
(Chapter 3), the treatment is concluded to have a causal efect. The rationale 
of this reasoning is that the randomization makes the treatment X independent 
of the potential outcomes Y

0
, Y

1
, thereby closing the gap between, on the one 

hand, the between-group diference (Equation 5.2) estimable from actual obser-
vation, and on the other, the average treatment efect (Equation 5.1) defned 
only over possible worlds. 

RCT has been the royal road of causal inference, and much of what we take 
to be scientifc knowledge today is based on it. Most newly developed drugs, 
for instance, must pass an RCT experiment before they are approved for mar-
keting. But it is by no means a foolproof method (Worrall 2007), and conducting 
an RCT trial involves various pragmatic as well as ethical challenges. RCT 
experiments usually call for meticulous preparation and a large amount of human 
as well as fnancial resources. In addition, the requirement of random assignment 
raises serious ethical concerns in some cases. For example, it would be ethically 
impermissible to force randomly chosen people to smoke cigarettes in order to 
confrm the health risk of smoking. There are also cases in which experiments 
are practically impossible or infeasible, as in the assessment of human-induced 
ecological risks or the economic impact of a certain policy. Even in those cases 
where experiments are difcult or unrealistic, however, observational data of 
putative causes and efects may be available. For instance, collecting smoking 
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history and health records should be much easier and ethically less problematic 
than running an RCT trial. Can’t we make use of such observational data to 
say something about causal relationships? To look at it from another perspective, 
RCT is a method for creating counterfactual what-if situations through random 
assignments. But isn’t there a way to just “peep into” other possible worlds, 
without creating them in this actual world? 

From a metaphysical standpoint, peeping into other possible worlds may sound 
like crying for the moon. There is, however, a way to make this metaphysical impos-
sibility partially possible, with the aid of a certain assumption. To see what this 
assumption is, let us revisit Table 5.1. Our “fundamental” problem, recall, was that 
although the estimation of causal efect demands us to determine both of the 
two rows Y

0
, Y

1 
for each subject, what we can observe is at most one of them. 

Indeed, the value of Y
0
 is missing for subject A, whose X value is 1, while Y

1 

is missing for B, whose X value is 0, and so on. This is a matter of course, 
given that the value of Y

i
 was defned to be “the value of Y when X = i.” 

Suppose, however, that the subjects A and B are identical twins, who are almost 
exact replicas of each other except for their preference for sweets. In this imagi-
nary situation, we would be able to interpret the outcome of subject B as “the 
outcome A would exhibit if A were not a sweets lover,” and conversely, that of 
A as “the outcome B would exhibit if B were a sweets lover.” In fact, the two 
need not be actual twins for the purpose of our reasoning. Regardless of their 
biological origin, if two or more subjects are alike in every respect except for 
their value of treatment X, then the value of Y

i
 observed for one of those 

subjects should be able to serve as a surrogate for “the values in the possible 
world” of their counterparts, which are inevitably missing in this actual world. 
If this is possible, by accumulating these data we can calculate the diference in 
efect Y

1 
− Y

0
 for each pair of replicas, and by averaging them we can eventu-

ally estimate the average treatment efect (Table 5.2). 
Of course, this is a big if, since actual data can hardly ever contain such 

fortuitous twins. Besides, there is a conceptual issue regarding the ambiguity in 
the notion of “likeness.” Since one can come up with as many possible attributes 
as one pleases, any pair can be considered both similar and dissimilar in infnitely 

TABLE 5.2 Aggregating subjects {A, B} and {C, D} in Table 5.1 as “alike pairs.” Supple-
menting the values of Y

0
, Y

1 
from the counterparts allows us to calculate the 

treatment efect Y
1 
− Y

0 
for each pair. 

Subject A B C D E . . . 

X 1 0 0 1 1 . . . 

Y
0 

Y
1 

Y -Y
1 0 

0 

1 

1 

1 

1 

0 

– 

0 

– 

. . . 

. . . 

. . . 
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many respects. Hence, in order to meaningfully talk about likeness, we need to 
delineate a privileged set of properties, such that two subjects need only coincide 
with respect to those properties in order for them to be judged to be alike. 
Indeed, requiring subjects to match in every respect is too much for our pur-
pose. Our goal, recall, is to make X and Y

i 
in the formula (Equation 5.2) 

independent. It sufces for this purpose to fnd a set Z of variables for which 
the conditional independence X ⊥

P
Y

0
, Y

1
|Z holds. This condition is known 

as the assumption of a strongly ignorable treatment assignment or ignorability for 
short. The assumption can be written as the probabilistic formula 

P x y y˜ | , ,z° ˛ P x( |z) (5.3)0 1  . 

What we need, then, is a list (or vector) of attributes Z satisfying Equation (5.3). 
Now, to condition a probability distribution on a variable is to narrow down 
the subjects according to that variable, limiting our focus to the probabilities of 
those individuals who have the same value for that variable. The key idea in this 
reasoning, therefore, is that subjects with the same value of Z can be considered 
“alike” for the purpose of inferring a causal relationship between X and Y. 

Specifcally what kind of attributes, then, should be contained in Z? The 
answer is: all confounding factors between X and Y (Section 5.1). A Z that 
covers all such confounders realizes the independence condition (Equation 5.3) 
and allows for the estimation of the average treatment efect (Equation 5.1) from 
observed data. But as we noted in Section 5.1, there are in general many possible 
confounding factors, and including all of them in a regression model as covariates 
reduces the accuracy of the analysis. This problem will be mitigated if all these 
confounders can be summarized into one variable. There exists such a propitious 
variable, called the propensity score, which is defned as the probability of getting 
treatment X given covariates z, namely P(X = 1|z). In our case, two subjects 
can be considered alike if they coincide in just one respect, which is their prob-
ability of being a sweets lover. You may think, however, that being a sweets lover 
or not is hardly a conspicuous trait that one can discern with a casual look. But 
if you are provided with some background information, such as that a person 
frequently checks gourmet magazines, or has a habit of eating between meals, 
then you may be able to infer the probability of the person’s having a sweet 
tooth. Thus, the strategy commonly employed in practice is to estimate the 
propensity score from (confounding) factors that may afect the treatment, and 
then substitute these estimates for z in Equation (5.3) to achieve ignorability. 

The suite of causal inference techniques based on the ideas of potential out-
comes and propensity scores is known under the name of the counterfactual model. 
Pioneered by Donald Rubin (1974), this methodological framework has been 
widely used for the task of inferring causal relationships from observed data 
(Morgan and Winship 2007; Rosenbaum 2017). Just like any statistical method, 
this approach has its own assumptions. Most important among them is the 



 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

158 Causal Inference 

aforementioned condition of a strongly ignorable treatment assignment, the 
satisfaction of which requires the user to cover all possible confounders. But as 
we have seen in Section 5.1, there is no a priori limit on the number of potential 
confounders, and there are variables like the M-structure which should not be 
included as covariates. Thus the problem of covariate selection, which was the 
Achilles heel of multiple regression, still plagues the counterfactual model. What, 
then, is the merit of the counterfactual model over the conventional regression 
analysis method? One advantage is epistemological: by summarizing various 
covariates into one propensity score without explicitly including them all in the 
model, the counterfactual model efectively reduces the number of parameters 
that need to be estimated, thereby improving the performance of the model 
(Chapter 4) and allowing for fexible modeling. For empirical modelers who 
want to cover a diverse range of covariates of diferent nature in order to accu-
rately estimate the causal efect under study, this is undoubtedly a big advantage 
of the counterfactual model. But also important, and perhaps more so for our 
philosophical analysis, is its semantic implications. In contrast to the regularity 
theory, which equates causality with some form of probabilistic relationship, the 
counterfactual model eschews such a reductionistic defnition. It conceptualizes 
a causal efect not as some actual state of afairs manifest in the data, but as a 
sort of “inter-world diference” that emerges only when one compares observable 
data with counterfactual data which would have obtained under diferent cir-
cumstances. The concept of potential outcome, which is deeply rooted in the 
possible-world framework, is introduced in order to represent such counterfactual 
relationships. The counterfactual model and regularity theory thus part ways in 
their conceptual understanding of what causal relationships are. Granted, when 
it comes to actually estimating the average treatment efect, the counterfactual 
model still resorts to the traditional concept of a conditional dependence between 
the response and explanatory variables, which is nothing but a sort of statistical 
association. But such a probabilistic relationship does not defne causality; rather, 
it is used as an actual-world foothold or proxy for inferring the causal relationship. 
The concept of causality belongs to the realm of possible worlds, which extends 
beyond probability models, and for this reason it is irreducible to probability. To 
sum up, the counterfactual model stands on the Lewisian semantics of causality, 
according to which causal statements are claims about the structure of possible 
worlds, and furnishes an epistemology for determining the truth value of such 
claims on the basis of observed data. In this respect, it has rich implications for 
metaphysical as well as epistemological inquiries into the nature of causality. 

5.3 Structural Causal Models 

The counterfactual model ofers a powerful methodological framework for causal 
inference based on observational data. But just like any other method for induc-
tive reasoning, it stands on certain presumptions about the objects of research. 
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We have seen some of the assumptions made by the counterfactual model, such 
as the inclusion of major confounders in the covariates and the exclusion of 
M-structures. From a mathematical perspective, the motivation and intent of 
these postulates is clear: they establish ignorability and allow for unbiased esti-
mation of the average treatment efect from observed sample means. But here, 
we want to push a bit harder and ask what their philosophical purport is. By 
claiming that these assumptions make causal inferences possible, we are embrac-
ing a certain understanding about the relationship between causality and prob-
ability. What, then, is this relationship, and how can we make it more explicit? 

In Chapter 1 we noted that positing a probability model amounts to assum-
ing a uniformity of nature that remains invariant behind the randomly fuc-
tuating data, and to build a parametric statistical model is to categorize this 
posited “nature” as a certain probabilistic kind. These statistical assumptions 
embody the ontological stance with which we conceptualize what there is 
and what kind of things our research targets are. Now, we observed earlier 
that the modeling assumptions of causal inference are diferent in kind from 
those of conventional statistical models. What kind of ontological picture, 
then, is implied by these assumptions? For instance, beneath the claim that 
covering all confounders ensures ignorability, there must be a certain assump-
tion regarding the relationship between causality and probability. The rest of 
this chapter aims to extract the ontological implications of this and other 
modeling assumptions of causal inference, in light of yet another important 
methodological framework known as structural causal models (Spirtes, Glymour, 
and Scheines 1993; Pearl 2000). 

5.3.1 Causal Graphs 

The counterfactual approach understands causality in terms of counterfactual 
relationships between actual and possible worlds. But a more intuitive and com-
mon understanding of causality would take causality as a kind of directed infu-
ence, such that X causes Y if and only if X infuences Y in some way or another. 
This kind of infuence relationship is conveniently expressed by an arrow, X → Y. 
If there are multiple causal relationships, we can add further arrows to form a 
directed graph to represent the causal structure over variables. Formally speak-
ing, a directed graph is a pair (V, E) of a set V of variables and a set E of 
arrows between them. A directed graph used to represent a causal structure is 
called a causal graph over variables V and is denoted by G. Various causal notions 
can be defned in terms of graphical structures. A sequence of arrows between 
one variable X and another Y is called a path. Arrows constituting a path need 
not be all pointing in the same direction. But if they are uniformly directed, 
as in X → X → . . . → X , the path is called directed. When there is a directed 

1 2 n 

path from X to Y, then Y is considered to be an efect of X. A directed path 
that starts and ends at the same variable, as in X

1 
→ X

2 
→ . . . → X

1
, is called 
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X2 

X1 X4 X5 

X3 

FIGURE 5.1 Illustration of a DAG. In this graph, the path X → X → X → X is
1 2 4 5 

directed, while X → X → X ← X is not. X is a collider in the latter
1 2 4 3 4 

path. 

a cycle. A directed graph that does not contain any cycles is called a directed 
acyclic graph, or DAG. For the sake of simplicity, in what follows we limit our 
focus to DAGs. A variable on a path wedged between two incoming arrows 
(e.g., the Z in X → Z ← Y ) is called a collider; otherwise (i.e., if X → Z → 
Y or X ← Z → Y ), the variable is called a non-collider. 

The graphical representation presented in Figure 5.1 serves to capture 
our intuitions about causality. In particular, a graph can visually represent 
which variables are causally related to which and, more importantly, when 
such causal connections are blocked. For instance, our intuition tells us that 
if there is a causal “fow” X → Z → Y, then X infuences Y, but also that 
when the intermediate Z is blocked or fxed, the “fow” is stemmed and 
the infuence relationship is lost. This intuition about the “blocking” of a 
causal pathway can be refned into a slightly more formal defnition. We say 
that a set of variables Z blocks a path between X and Y if one of the 
following obtains:5 

1. There is a non-collider on the path that is contained in Z. 
2. There is a collider on the path such that neither it nor its efects are contained 

in Z. 

A non-blocked path is called open. The frst condition should be intuitive. A 
non-collider on a path connecting two variables is either the intermediate of a 
directed path X → Z → Y or a common cause X ← Z → Y. Intuitively, if 
either of these is blocked, the causal connection will be cut of. The second 
condition is a bit complicated, but it should not require much stretch of thought 
to think that a path is blocked if it contains a collider (forget for now the 
proviso that neither it nor its efects are included in Z). In a colliding path 
X → Z ← Y, X and Y independently infuence the collider Z; so there is no 
reason to think that these causes are themselves causally related. Harder to swal-
low may be the proviso that this path will be open if either the collider or its 
efect is contained in Z. I just beg you to accept this as a formal defnition of 
blocking. Or, you may imagine the causal infuences as fows of water running 
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down from the two reservoirs X and Y to Z; then a damming at Z or some-
where downstream causes overfow, giving rise to a fow between the two 
reservoirs X and Y. 

While an open path creates a causal connection between variables, blocking 
it will interrupt the connection. In general, a pair of variables X, Y may have 
zero, one, or more paths between them. If there is no path, or if any existing 
path is blocked in the aforementioned sense, X and Y are said to be d-separated 
by Z. Let us illustrate this with Figure 5.1. In this fgure, there are two paths 
between X and X , namely X ← X → X and X → X ← X . Setting Z = 

2 3 2 1 3 2 4 3 

{X } will block both, so that X and X are d-separated by X . On the other
1 2 3 1 

hand, the empty blocking set Z = ∅ will leave the frst path unblocked, while 
including the efect X

5
 of the collider as Z = {X

1
, X

5
} will open the second 

path; so neither of these d-separate X
2 

and X
3
. We can thus conclude that the 

causal connection between X
2 
and X

3 
in this graph is interrupted if and only if 

X
1 
is used as the blocking set. 
All we have done to this point is formulate our intuitions about causal rela-

tionships in graphical terms and supply some defnitions. We haven’t yet said 
anything about how the causal structure represented in this way relates to a 
probability distribution over the variables. This relation is specifed by the famous 
causal Markov condition, which claims that when variables are d-separated in a 
causal graph, i.e., when their causal connection is interrupted, they become 
probabilistically independent. By letting X ⊥

G
Y |Z denote that variables X, Y 

are d-separated by Z in graph G, the condition is written as 

X ˜ Y Z ° X ˜ Y Z. (5.4)G P 

Do not confuse the two sides of the condition. The right-hand side is a claim 
about probabilistic independence ⊥

P
 and thus concerns a probability distribution 

over variables; while the d-separation relationship ⊥
G
 on the left-hand side 

concerns the positional relationships of variables in the causal graph (the index 
G makes it clear that this relation is relative to graph G). So these statements 
are of a diferent nature. Probabilistic dependence represents a co-occurrence 
relationship among variables, where the occurrence of one tends to coincide 
with that of the other. A causal graph, on the other hand, represents a causal 
infuence among variables, where one variable infuences the other along the 
direction of the arrows. A causal graph and a probability distribution, therefore, 
capture diferent aspects of things. The Markov condition (Equation 5.4) purports 
to establish a certain relationship between these two diferent aspects, to the 
efect that causally separated variables are also probabilistically independent. 

But on what ground should we believe that such a Markov relationship 
holds? One rationale comes from taking a probability distribution as generated 
from an underlying causal structure, which is represented by a DAG. To explicate 
this argument, we frst need to furnish the qualitative representation of causal 
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relationships in terms of a DAG with a quantitative specifcation, by attaching 
a function to each variable. The function determines the value of each variable 
X

i 
∈ V from its direct causes and the error term U

i
 specifc to it. Let dc

i
 stand 

for the values of the direct causes of variable X
i
. Then the desired function has 

the form: 

x ˜ f °dc ,u ˛i i i i 

which is defned for each variable X
i 
∈ V. These equations, called structural 

equations, quantitatively specify how variables in the model respond to their 
causes (and the error terms). The error terms U

i
 are assumed to be independent 

and follow some probability distribution P. Substituting these distributions into 
the structural equations uniquely determines the joint probability distribution 
P(V ) over all variables X

i 
∈ V. Thus, a DAG G, equipped with structural equa-

tions and a marginal distribution over the error terms (called “exogenous” 
variables), generates a joint distribution P(V ). Any distribution generated in this 
way is known to satisfy the Markov condition (Equation 5.4) with respect to 
the underlying graph, i.e., the graph that generates the distribution (Spirtes, 
Glymour, and Scheines 1993; Pearl 2000). Hence, if we are to think that causal 
structures are adequately modeled by DAGs and sets of structural equations, the 
Markov condition is expected to hold in general.6 

5.3.2 Interventions and Back-Door Criteria 

To summarize what we have seen so far, structural causal models represent a causal 
structure in terms of a directed graph, which, combined with structural equations 
and probabilistic inputs into the exogenous variables, generates a joint probability 
distribution that satisfes the Markov condition with respect to the underlying 
causal graph. With this in mind, we now explore the advantage of this view: how 
do structural causal models serve our practice of causal inference? 

The frst merit of the graphical representation is that it allows for a formal 
defnition of the concept of intervention and the systematic prediction of its 
outcomes. In the counterfactual approach, a causal efect is defned as a difer-
ence between actual and possible worlds. But more commonly, causality has 
been understood in connection with intervention. If eating too much sweets 
causes a cavity, an efective intervention on the former would change the prob-
ability of the latter—or, to consider a radical measure, the enactment of a law 
that prohibits the manufacture, import, possession, and consumption of any 
sugary food would reduce tooth decay (and also delight). On the other hand, 
the prohibition would have no efect should the correlation between sugar 
consumption and cavity be a spurious one, due to some confounding factor. 
This suggests that if X causes Y, there is a possible intervention on X that 
changes the distribution of Y (Woodward 2003). Such an intervention can be 
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X2 

X1 

X3 

X4 X5 

FIGURE 5.2 The graph after intervention on X
2 
in Figure 5.1. 

expressed by deleting all incoming arrows to the target variable X in a causal 
graph, for the intervention should decouple it from its original causes and force 
it to follow some designated distribution. Figure 5.2 illustrates the graph result-
ing from an intervention on X

2
 in Figure 5.1. If we interpret X

1
 as denoting 

the taste of each individual, X
2
 as sugary consumption, X

3
 as alcohol consump-

tion, X
4
 as the presence of a cavity, and X

5
 as the dental health expenditure of 

each person, the manipulated diagram represents that the strict enforcement of 
the sugar ban law brings sugary consumption down to zero, regardless of one’s 
taste. Prohibition of alcohol, on the other hand, could be formulated as a similar 
manipulation on X

3
 in this graph. 

Next, let us ask how such interventions afect the overall probability distribu-
tion. If you are a high ofcial of the Treasury, you might be interested in 
whether and to what extent the sugar ban law would reduce healthcare costs.7But 
you are certainly not supposed to actually run the experiment to see the efect. 
It would be benefcial if you could predict the outcome of the intervention 
without actually doing it, just on the basis of observational data. The do-calculus 
achieves just this, allowing for prediction of an intervention outcome using a 
causal graph (Pearl 2000). The calculus is based upon the causal Markov condi-
tion, which allows us to factorize a joint probability distribution into a product 
of conditional probabilities of the variables given their direct causes, as 
follows: 

P v( ) ˜ P v° dc ˛ ,i i 
vi˝v ̇

 
where dc

i
 is a value of the direct causes DC

i
 of variable V

i
. In the case of the 

graph in Figure 5.1, the factorization yields: 

P x x x x x ° P x x P x x x P x x P x x P x| ° ˜ | , | ° ˜ |˜ , , , ,  ˛ ˜ ° ˜  ° ˜ °.1 2 3 4 5  5 4  4 2 3  3 1  2 1  1 

Note that the probabilities on the right-hand side can be estimated from obser-
vational data. Now, let us intervene on X

2 
to bring down the sugary consump-

tion. We express this intervention with the operator do(X
2 
= 0), and write the 

manipulated (i.e., post-intervention) joint distribution as P(x
1
, x

3
, x

4
, x

5
|do 
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(X
2 
= 0)). Note that in general this difers from the standard conditional prob-

ability P(x , x , x , x |X = 0). To obtain this manipulated distribution, we can 
1 3 4 5 2 

just apply the Markov condition again to the manipulated graph (Figure 5.2). 
Since the intervention deletes all the incoming arrows to X

2
, we drop P(x

2
|x

1
) 

from the aforementioned factorized formula and obtain 

P x x x x d° , , , | o X ˜ 0˛ ˜ ° 5 4  4 2 3| , ˛ ° | 1 .° P x x P x x x P x x P x  1 3 4 5  2 ˛ | ˛ °  3 1 ˛ ° ˛  

Since the terms on the right-hand side are identical to the unmanipulated 
conditional probabilities, this equation successfully derives the post-intervention 
probability (the left-hand side) from the pre-intervention probabilities. That is, 
given the unmanipulated causal graph and the probabilities of the variables, one 
can predict consequences of hypothetical interventions without actually inter-
vening on the system. The prediction of a particular variable, say the healthcare 
cost after enactment of the sugar ban law P(X

5
|do(X

2 
= 0)), can then be easily 

obtained via marginalization. 
The interventionist conception of causality by no means conficts with the 

counterfactual notion of causality discussed in the previous section; rather, they 
are two sides of the same coin. In efect, an intervention on variable X is noth-
ing but a creation of a possible world which difers from the actual world only 
in the value of X, and is otherwise the same. The enforcement of the sugar 
ban law in the previous example, for instance, is meant to create a society devoid 
of any sugary foods on the market, but identical to the existing society in every 
other respect, including, say, alcohol consumption.8 If, therefore, we take the 
diference in the expected value between two distinct intervention efects, we 
obtain the average treatment efect (Equation 5.1): 

 Y ˛  ̃ °Y ˝  Y do X ˝ 1 ˛ ( | ( ˝ 0)),˜ °  ( | ( )) Y do X  1 0 

where Y
0 
and Y

1 
are the potential outcomes of Y under treatments X = 0 and 

X = 1, respectively. In other words, the average treatment efect is nothing 
but the diference in the expected value of Y under two point interventions, 
do(X = 1) and do(X = 0). 

The second merit brought by causal graphs is that they allow us to visu-
ally inspect and identify the circumstances under which the ignorability 
condition, which is essential to estimating causal (average treatment) efects, 
obtains. In Section 5.2.2, we observed that the average treatment efect is 
estimable from observational data if the covariates Z satisfy the ignorability 
condition (Equation 5.3). But determining all the relevant covariates is, as 
we noted there, a tricky business. A causal graph assists us with this task by 
providing the back door criterion which graphically tells us the variables to be 
included in the covariates sets. A set Z of covariates, according to this 
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criterion, achieves the ignorability condition if (Pearl 2000; Morgan and 
Winship 2007): 

1. Z does not contain an efect of X; and, 
2. In the graph where one has deleted all outgoing arrows from X, Z d-separates 

X and Y. 

Together these conditions state that, in order to estimate the causal efect of X 
on Y, one should block all and only the causal paths between the two variables 
except for the very pathway through which X afects Y (this latter point is the 
reason why the second item requires deleting all outgoing arrows from X; it 
prevents one from blocking the very causal infuence to be estimated). This 
criterion explains why common causes of X and Y, which create an open path 
between them, must be included in the covariates in order to d-separate them. 
On the other hand, since including a common efect X → E ← Y or a collider 
in an M-structure opens a path, the covariate set should not contain them. In 
this way, causal graphs visually guide us in determining the set of variables that 
should be included as covariates. 

5.3.3 Causal Discovery 

The discussion in the previous section presupposes that we know the true causal 
graph that satisfes the Markov condition with respect to the actual probability 
distribution. In fact, there is no reason to expect that a causal hypothesis made 
by a random guess would yield the correct intervention calculus or allow us to 
control for confounding factors. Where, then, does the correct causal graph 
come from? In some fortunate cases, a good grasp of the causal relationships 
may be provided by domain knowledge. But the causal nexus among target 
variables is usually unknown in many practical problems, and in such cases a 
causal graph must be inferred from the data in some way or another. This calls 
for a yet another epistemology, which probes the data for the underlying causal 
structure. 

The methodology comes under the general rubric of causal discovery and 
comprises a variety of algorithms with diferent focuses. These search algorithms 
are motivated by the aforementioned ontological assumption, namely, that a 
probability distribution is generated from a certain causal structure. If so, the 
probability distribution and samples obtained from it should contain some sig-
nature of their origin, and by tracing this signature we should be able to recover, 
at least partly, the generating mechanism. Causal search algorithms trade on 
various sorts of such traces that persist in the data, in order to uncover a causal 
structure among variables in the form of a causal graph. To convey the idea, 
here we briefy review just one of the most standard and classical approaches 
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that make use of statistical independence. Earlier we used the Markov condition 
to derive probabilistic conclusions from a given causal relationship. Relevant to 
causal search is the inference in the opposite direction, which infers a causal 
structure from the given information about probabilistic relationships. For this 
purpose, we assume the following faithfulness condition: 

X ˜ Y Z ° X ˜ Y Z . (5.5)G P 

Conversely to the Markov condition, the faithfulness condition claims that if 
conditional independence obtains among the variables in question (the right-
hand side), then they are d-separated (the left-hand side). Let us see how this 
allows for causal inference. Suppose we have a probability distribution over three 
variables X, Y, Z for which X ⊥

P
Y and X ⊥ PY|Z hold.9 That is, X is inde-

pendent from Y unconditionally but becomes dependent if conditioned on Z. 
If faithfulness holds, there is only one causal relationship consistent with this 
pattern of independence, namely X → Z ← Y. This is because, on the one 
hand, X ⊥

G
 Y guarantees that there is no directed path or common cause that 

exchanges causal infuence between X and Y, and on the other hand, from 
X Y|Z , i.e., the fact that Z opens a path between X and Y, we can conclude 
that Z is a collider between the two. This illustrates how the faithfulness condi-
tion allows for causal inference from probabilistic relationships. 

However, full recovery of the causal structure is not always possible. To see 
this, suppose that the independence relationships X  and X ⊥ Y |Z hold.⊥ PY P 

This distribution is consistent with any of the following three diferent causal 
hypotheses: X → Z → Y, X ← Z ← Y, and X ← Z → Y. Therefore, one 
cannot uniquely determine which of these represents the true data-generating 
structure. In this and many other cases, what we can infer from a probability 
distribution is a set of causal hypotheses that equally accommodate the given 
data, and in such cases we must resort to other means in order to further nar-
row down the candidate hypotheses. Moreover, the assumed faithfulness condition 
does not necessarily hold all the time. Faithfulness means that probabilistically 
independent variables are causally separated. But in case one variable infuences 
another through two distinct pathways that cancel each other out, there may 
be no visible statistical association between the two variables, even though the 
frst should in fact be considered a cause of the other. When we have such an 
unfaithful distribution, the independence-based algorithm for causal discovery 
sketched earlier does not work out. 

We thus come down to the same moral we have encountered again and 
again in this book: one cannot make an inductive inference without making an 
assumption. Probing the data for a probability distribution requires an assump-
tion like the IID condition or a statistical model. Using a propensity score to 
estimate the average treatment efect presupposes the ignorability condition. 
Likewise, the algorithmic reconstruction of causal graphs from conditional 
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independence calls for faithfulness or similar assumptions. These assumptions 
themselves cannot be justifed by the statistical methods they support, and so 
they must be justifed by other means or background knowledge, unless they 
are accepted as dogma. Statistics as an epistemology is a never-ending process 
of justifcation, which aims to build a bridge over the fundamental logical gap 
inherent in any inductive inference. The faithfulness condition is one such 
bridge, such that by crossing it one sets foot in the realm of causality with the 
aid of probabilistic knowledge. (The Markov condition, on the other hand, is 
a bridge going in the opposite direction, which one may use to derive a proba-
bilistic prediction on the basis of causal knowledge.) The independence-based 
algorithms sketched in this section are by no means the only bridge between 
causality and probability: there are several other approaches which make use of, 
say, distributional or functional forms. For the details of such approaches, see 
Peters, Janzing, and Schölkopf (2017). 

5.4 Philosophical Implications of Statistical Causal Inference 

This chapter sketched the two major approaches of statistical causal inference, 
the counterfactual model and causal structural model, and examined their 
philosophical implications. In this concluding section, we would like to see how 
all these pieces ft together with the statistical worldview we have tried to portray 
throughout this book. 

Let us begin by recalling the dualism of data and probability models that we 
introduced in Chapter 1 as the ontological framework of inferential statistics. 
In order to infer the unobserved from the observed, inferential statistics posits 
a latent entity beyond the data. This entity, mathematically expressed as a prob-
ability model, is expected to serve as the “uniformity of nature” that remains 
invariant over samplings at diferent times and places, and predictions are made 
via inference to this probability model. It is under this dualistic ontology that 
modern statistics has developed its sophisticated machinery for predicting unob-
served phenomena and evaluating risks under uncertainty. 

Does the same framework also accommodate causal inference, another typical 
kind of inductive inference? Until around the mid-20th century, many philoso-
phers believed that there is no fundamental gap between causal explanation and 
prediction, and they aimed to locate them within a unifed formal framework 
(the so-called covering law model; Hempel and Oppenheim 1948). In parallel, 
statisticians developed various methods for gauging causal relationships in proba-
bilistic terms, like multiple regression, generalized linear models, structural 
equation modeling (SEM), and so forth. These reductionist approaches to causal 
inference, however, face the conceptual problem noted in Section 5.1, precisely 
because causal relationships are not probabilistic relationships, as philosophers as 
well as statisticians began to realize toward the end of the century. The nomo-
logical pattern underlying causal inference or everyday causal talk is diferent in 
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kind from the uniformity introduced for the purpose of prediction. For this 
reason, probability models, or any model of the uniformity of nature for that 
matter, fail to capture causality. 

This becomes even more evident if we consider intervention, a notion that 
is intimately related to our conception of causality. While prediction is an infer-
ence to a potential or future observation, causal inference concerns the efect 
of a hypothetical intervention (Section 5.3.2). An intervention alters the target 
system by interfering with its old state to turn it into a new state. This breaks 
down the uniformity or probability distribution of the original system and 
replaces it with a new one. The enactment of a sugar ban law will change the 
proportion of cavities as well as the distribution of healthcare costs (which is 
exactly the aim of the law). The interest of causal inference lies precisely in this 
transition and the resulting distribution. The laws of this change cannot be 
sought only within the very system subject to the change. What is needed for 
such an inference is an inter-world nomological relationship that connects dif-
ferent distributions/worlds, and in this sense causal inference calls for a meth-
odological framework that goes beyond probability models. 

The notions of possible worlds and causal models introduced in this chapter 
are the conceptual machinery we can use for capturing this realm lying beyond 
the probability models. Just as inferential statistics introduces probability models 
as the uniformity of nature in order to infer unknown data from known data, 
causal inference introduces causal models as another kind of law in order to derive 
the post-intervention probability model from the pre-intervention one. One can 
thus conceive them as yet another structure lying behind probability models, and 
with this additional ontological posit, causal inference comes to espouse a 
trialist ontology (Figure 5.3) which accommodates three sorts of entities— 
data, probability models, and causal models. A probability model, as we saw in 
Chapter 1, models the world itself, which lies behind observable data. Diferent 
probability distributions thus represent diferent worlds. The goal of traditional 
statistics discussed in the previous chapters is to help us determine, on the basis 
of observational data, which among these possible worlds/distributions is this 
actual world. On the other hand, the question to be answered by causal infer-
ence is: if one were to make an intervention on the actual world, which world 
would be realized? Which world would it evolve into? An intervention is a 
mapping from the actual to a possible world, and the goal of causal inference 
is to identify the law that governs this mapping. Causal models are models of 
such mapping relationships among possible worlds. In the newly introduced 
causal layer, interventions are defned as graph transformations, on the basis of 
which the do-calculus derives the post-intervention probability distribution. As 
a matter of fact, a causal model can be thought of as a function that takes a 
distribution and an intervention as inputs and gives the post-intervention dis-
tribution as output, while the do-calculus is a way of calculating this function. 
An inference to a causal efect amounts to predicting, with the aid of such 
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DATA D 
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FIGURE 5.3 The trialism of causality, probability, and data. The causal inference 
framework posits causal models as an additional sort of “entity” behind 
probability models, a mechanism that generates the latter. Since an 
intervention breaks the uniformity of a probability model, the post-
intervention distribution cannot be calculated from the pre-intervention 
distribution alone. Defning interventions in the causal layer allows one 
to make an inference to its possible consequences on the distribution as 
well as the data to be observed. Meanwhile, the estimation of causal 
models tend to be more difcult, for they lie one step “further” away 
from the data than probability models. 

calculation, the change from the actual to a possible world induced by an 
intervention. And, as we have argued, this calculation becomes possible only 
on the supposition of the generative law behind possible and actual worlds/ 
distributions, as well as the formal modeling of such a third-level “entity” in 
terms of causal models. 

Clearly distinguishing these ontological layers proves important not just 
philosophically, but also for a better understanding of statistical concepts. In 
inferential statistics, it is crucial to distinguish between properties of data described 
by various sample statistics on the one hand, and those of the population 
described by, say, expected values, on the other. Though parameters of a dis-
tribution may be estimated from data, they cannot be calculated from them, for 
these two concepts, parameters and data, belong to diferent ontological layers. 
Exactly for the same reason, concepts belonging to probability models and those 
belonging to causal models must be sharply distinguished in causal inference 
(Pearl 2000). While expected values and independence are properties of a prob-
ability model, the average treatment efect and d-separation belong to the realm 
of causal modeling. They are conceptually distinct, and the one cannot be 
identifed with the other. What we can do at best is to infer the latter from the 
former under certain conditions, such as ignorability or faithfulness. Likewise, 
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causal graphs should not be identifed with Bayesian networks, understood as a 
graphical encoding of patterns of conditional independence among variables. 
For while Bayes nets are just graphical representations of properties of individual 
probability distributions, the primary aim of causal graphs is to capture relation-
ships among distributions, as we have stressed. Mathematical formulations some-
times hide this and other important ontological distinctions under their abstract 
guise. Mathematically speaking, Bayes nets and causal graphs are the same kind 
of object—directed graphs—in graph theory. Furthermore, the estimation of 
causal efects based on propensity scores uses essentially the same method as the 
standard regression analysis. Such abstractions exemplify the strength of math-
ematical formulations, which are applicable to a wide range of phenomena 
regardless of their specifc peculiarities. But exactly for this reason, the same 
mathematical method or expression may stand for diferent things. This difer-
ence is often attributed to a diference in “interpretation”—one might say, for 
example, that a given statistic is interpreted as a correlation coefcient in one 
context and as a causal efect in another. Looking at it more deeply, however, 
this in fact is a diference in the underlying ontological assumption, i.e., in how 
we conceptualize the target phenomena and what kinds of things we think they 
are. If the problem under consideration is conceptualized in terms of a proba-
bilistic kind, then all what we can conclude about it will be restricted to proba-
bilistic matters, and the validity of our conclusions will depend on whether the 
target system really has the ontological features of the probabilistic kind (such 
as uniformity). If, on the other hand, we want to draw causal claims, we need 
to regard our target not as a mere probabilistic kind, but rather as a causal kind. 
Then the validity of those claims will be contingent on the soundness of such 
an ontological attribution, i.e., whether the conditions to be satisfed by a causal 
kind are really satisfed in the case at hand. For these reasons, understanding 
concepts at the proper ontological level is essential even in the practice of sta-
tistical analyses. 

To sum up, what we can conclude with the mathematical machinery of 
statistics depends on the ontology with which we conceptualize the phenomena 
under question. Statistics encodes such ontological assumptions with the formal 
apparatus of probability distributions, potential outcomes, causal graphs, and so 
forth, and provides epistemological methods for checking these assumptions on 
the basis of data. On the other hand, the question of which ontological stance 
should be taken or preferred in the frst place is not a question that admits a 
general or logical solution; rather, it must be determined case-by-case through 
considerations of the nature of the problem and the aim of the research. If our 
interest lies in prediction, probabilistic kinds will do the job; but if our task 
involves intervention or control, causal assumptions are in order. We thus have 
to decide on our ontological stance in accordance with our problem and aim, 
prior to choosing and applying a particular epistemological method suitable for 
that purpose. 
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Further Reading 

Mumford and Anjum (2014) and Kutach (2014) are short introductory textbooks 
on the philosophy of causation. Rosenbaum (2017) explains the elements of 
the counterfactual model with a variety of examples and little math, while 
Morgan and Winship (2007) ofer a more detailed account. Structural causal 
models are succinctly summarized in Pearl, Glymour, and Jewell (2016). Peters, 
Janzing, and Schölkopf (2017) is a more advanced exposition that covers various 
approaches to causal discovery. 

Notes 

1. Interestingly, Hume also proposed a counterfactual defnition of causation right after 
his regularity-theory-like proposal, as a paraphrase of the latter (Hume 1748, sec. 7, 
pt. 2). Despite his equivocation, however, these two defnitions are diferent in nature. 

2. Of course, the counterfactual theory is not fawless and has faced several objections, 
including most notably the problem of overdetermination (Kutach 20140; Mumford 
and Anjum 2014). 

3. “An inference from efects to causes” is the characterization that has been more com-
monly associated with Bayesian inferences, which can certainly be used to infer from 
the occurrence of the efect the probability of the cause/hypothesis, which is itself 
expressed as a random variable. Such an inference to a probability is barred in fre-
quentism, where a hypothesis is not a random variable. Yet one may still take it as a 
reliability-based inference to the cause/hypothesis. 

4. In general, if two random variables X and Y are independent, i.e., P(Y|X) = P(Y), 
the same relation holds for their expectations: (Y X| ) = ( ) (verify this from the Y 
defnition of expectation). Furthermore, since in the present case Y

i
 is a binary variable 

that takes either 0 or 1 as its value, its expectation corresponds to its probability, i.e., 
 Y P Y .˜ °i ˛ ˜ °i 

5. Here Z and X ∪ Y are assumed to be mutually exclusive. 
6. Conversely, one who thinks that there is something in causality that eludes this model-

ing machinery is well motivated to doubt the causal Markov condition. See Cartwright 
(1999) for a skeptical view. 

7. Note that this book was originally published in a country that has a national healthcare 
system. 

8. An intervention that does not satisfy this condition and afects variables other than the 
target is called fat-hand. 

9. Of course, as we have repeatedly emphasized throughout this book, a probability 
distribution is not something that is “given,” but must be inferred from data. More 
specifcally, whether the said independence relationship holds or not must be judged 
by using some statistical procedure like hypothesis testing. But in what follows, we will 
simply take for granted the correctness of such judgments, and instead focus on the 
inference to a causal hypothesis given knowledge about a probability distribution. 



 

6 
THE ONTOLOGY, SEMANTICS, 
AND EPISTEMOLOGY OF 
STATISTICS 

In this book we have explored various methodologies in statistics, including 
Bayesian as well as classical statistics, model selection, machine learning, and 
causal inference, from the philosophical perspectives of ontology, semantics, and 
epistemology. In this concluding chapter, we summarize the discussions and 
refect on how each of these philosophical threads comes together to weave the 
fabric of statistical thinking. 

6.1 The Ontology of Statistics 

Any empirical science comes with its own ontological assumptions specifying 
the objects of its investigations, as well as ontological posits necessary for its 
explanatory practices. Based on this observation, we began this book by taking 
an ontological inventory of statistical science. What kind of things must be given 
or assumed in inductive inference? The ontology of statistics concerns such 
ontological questions and tries to identify the basic building blocks to be used 
in statistical inference and explanation. 

The most obvious and fundamental “thing” in statistical practice is data. No 
data in, no statistical inference out. Descriptive statistics begins with data and 
aims to extract characteristics and patterns from them in the explicit form of 
sample statistics. In this way, it contributes to our economy of thought by 
organizing a disorderly jumble of numbers into comprehensible fgures. On the 
other hand, descriptive statistics remains within the strict boundaries of the 
observed and says nothing beyond that, including what unobserved phenomena 
will look like. Such an inductive inference calls for an additional entity that 
serves as the latent source of the data, or what Hume called the uniformity of 
nature. A probability model is a mathematical model of the structure of the 
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world, which is supposed to remain invariant over observations at diferent times 
and places. Standing upon this data-probability dualism and taking the former 
as partial samples from the latter, inferential statistics ofers a mathematical 
framework for estimating the latent model from the data and using it to predict 
unobserved phenomena. Since we can never directly access the probability 
model, the assumption of uniformity must always remain a yet-to-be-confrmed 
hypothesis. Nevertheless, we cannot do without hypothesizing such an latent 
entity if we are to predict the future on the basis of past experience. 

If we take a probability model to be a model of the way the world is, then 
prediction can be thought of as an inductive inference bound within a single 
fxed world. This is in contrast to causal inference that we discussed in Chapter 
5, whose main interest is the outcomes that would ensue when one (hypotheti-
cally) makes changes to the world. That is, causal inference is interested in 
whether and how a given intervention changes a probability distribution. A 
causal statement that a variable X causes another Y is tantamount to the coun-
terfactual claim to the efect that if X’s value were diferent, or if it were 
manipulated, the distribution of Y would be diferent. In this sense, the objective 
of causal inference is to understand inter-world relationships, or, more accurately, 
transitions from one possible world to another triggered by interventions. Such 
inferences cannot be bound within a single world or probability model; one 
needs to further assume a plurality of possible worlds, connected to each other 
via certain nomological relationships. What is represented by causal models are 
such relationships among multiple possible worlds or probability models. There, 
interventions are defned as manipulations of causal graphs, on the basis of which 
a set of probability distributions is mapped to a set of post-intervention distribu-
tions. A causal statement that one variable is the cause of another is understood 
as a statement about the law governing the inter-world mappings. Not only is 
such a law invisible in the data, it also cannot be captured by a single probability 
distribution qua model of the actual world. In this sense, causal inference stands 
upon a deeper ontological assumption and takes on the difcult task of inferring 
this inter-possible-world structure from data obtained in the actual world. 

Ontological assumptions, therefore, determine the type of explanations avail-
able in a given statistical theory. While the positivist data-monism will sufce 
for the economy of thought, the dualistic ontology of probability models and 
data is in order for making predictions. And causal explanations and the inter-
vention calculus call for yet another, deeper, ontological layer of causal models. 
In general, a richer ontology enables a wider range of inferences. However, it 
also places a higher epistemological burden on us, for a heavy ontology means 
that more must be identifed from the data. Empirical investigations always 
proceed from a more direct and superfcial layer to deeper and more obscure 
layers. We set out with the data at hand and use them to probe a probability 
model, which in turn is used to probe a causal model. The validity of each 
inferential step depends not only on the methodological assumption proper to 
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that particular level, such as the IID assumption or the faithfulness condition, 
but also on the correctness of the prior inferential steps. A correct causal infer-
ence thus assumes not only the ignorability or faithfulness condition to bridge 
the gap between the layers of probability and causality, but also that the probability 
distribution that serves as the input for the causal inference is correctly estimated, 
which in turn hinges upon various conditions that bridge the layers of data and 
probability. Since there is no foolproof guarantee that these assumptions are 
true, inferences to a deeper layer tend to be challenging and uncertain. Given 
the inevitability of this trade-of between explanatory power and epistemic 
burden, it is crucial in the practice of statistical inference to make just the right 
kind of ontological assumptions, in accordance with the nature of the desired 
explanation or inference. 

Making clear distinctions among ontological layers proves useful in under-
standing various statistical concepts and their estimation procedures, too. 
Although most concepts in statistics are defned as a quantity or function, this 
does not mean that they all have the same ontological status—rather, as we have 
seen in Chapters 1 and 5, diferent concepts live in diferent worlds, as it were. 
While sample statistics live in the realm of data, concepts like expected values, 
probability distributions, parameters of a distributional family, and coefcients 
of a regression model belong to the realm of probability models. Finally, the 
average treatment efects and coefcients in structural equations pertain to causal 
models and represent inter-possible-world relationships. Estimation is the art of 
capturing concepts lying at a deeper layer using those at a more superfcial layer. 
It includes estimating parameters or regression coefcients from appropriate 
sample statistics within certain error bounds, evaluating causal efects via esti-
mated expected values, and judging the presence or absence of a causal con-
nection between variables on the basis of statistical tests. Statistics can thus be 
conceived as an attempt to cross these ontological boundaries, as well as determine 
the conditions under which this is possible. 

Since any layer beyond the data is not open to direct access, such a “trans-
gression” inevitably faces serious epistemological challenges. To overcome this 
difculty, standard statistical practice bases its inferences on further simplifying 
assumptions that curtail the hidden entity into prespecifed types. Statistical 
models, or probabilistic kinds in our parlance, are such types (Chapter 1). They 
are, so to speak, “models of a probability model”—the result of carving a prob-
ability distribution, itself something amorphous, into functions having defnite 
analytical forms. Such an explicit formulation enables us to represent a probability 
distribution using a fnite number of parameters, and to categorize individual 
stochastic phenomena into well-defned kinds or types of inductive problems, 
each represented by a distributional family such as a Bernoulli or normal dis-
tribution. In this way, probabilistic kinds sort out sui generis probability models 
and organize them into universal archetypes, just as natural kinds like “platinum” 
and “tiger” carve up nature and phenomena into handy categories useful for 
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prediction and inference. We believe that these natural kinds that we use in 
science as well as in everyday life refect the objective structure of the world 
and “carve nature at its joints.” But we can never know for certain whether 
our way of carving really follows nature’s joints. Just as what had been called 
jade turned out to be a category encompassing two sorts of minerals with dif-
ferent chemical constitutions, nephrite and jadeite, what we accept as a natural 
kind today may later be discovered to be an incorrect demarcation of nature. 
Likewise, a probabilistic kind represents a, but not the, way of carving nature. 
It is only one among many possible ontological hypotheses that helps us under-
stand a probability model and compare numerically distinct stochastic 
phenomena. 

Another point we should consider in connection with the ontological status 
of probabilistic kinds is the pragmatic aspect: what do we expect of such natural 
kinds, and for what purpose do we “carve nature” in the frst place? If we expect 
natural kinds to refect the objective structure of the world, good probabilistic 
kinds should be those that faithfully copy the target probability model. There is, 
however, another perspective, according to which the role of natural kinds is not 
so much to trace nature’s joints as to structure our experience in such a way as 
to facilitate future predictions, or in other words, to identify the real patterns 
(Chapter 4) that robustly show up in past and future observations. 

These two conceptions represent diferent ontological stances regarding the 
nature as well as the role of natural kinds. In Chapter 4, we described such an 
ontological shift as being prompted by theories of model selection. In contrast 
to traditional statistics, which tries to close in on the data-generating process in 
terms of probabilistic kinds, model selection theories shift the goal and aim to 
fnd a statistical model that will accord well with potential sample distributions 
to be obtained in future observations. These two aims do not necessarily concur, 
because the nature of the data we will observe is conditioned by our epistemic 
capabilities and depends on pragmatic factors such as sample size. Which pat-
terns are considered “real” usually depends on the cognizer’s epistemic abilities. 
Much in the same way, which probabilistic kinds are to be carved out by model 
selection criteria as robust patterns that are useful for prediction depends not 
just on nature, but also on the pragmatic circumstances of whoever uses them 
for predictive purposes. 

Dennettian pragmatism thus suggests that our ontology should be tailored to 
our epistemic capabilities. This also implies that a better cognizer equipped with 
bigger data and more powerful computational abilities would be able to discern 
real patterns in what only appears to us as senseless noise and use them for 
predictive purposes. This seems to be realized by the recent developments in 
machine learning, which ofer us glimpses into machine-cognizers that partly 
surpass our cognitive capabilities. What is interesting about deep models is not 
only that they are themselves gigantic probabilistic kinds with a huge number 
of parameters, but also that they seem to represent and classify the given 
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data—and thereby carve up the world—in their own way. This naturally leads 
to the question as to what their ontology looks like. Do deep learning models 
carve nature as we do, or are they using completely diferent natural kinds? The 
advance in transfer learning, which shows that models trained in one domain 
can be successfully applied to a diferent domain, seems to suggest that natural 
kinds learned by deep learning models are somewhat carved out according to 
nature’s joints. On the other hand, the striking cases of adversarial examples 
(Section 4.4.3) suggest the possibility that their carving is not yet perfect, or at 
least that the kinds they identify as “natural” may be utterly diferent from ours. 
Since these problems may present serious potential risks in the social application 
of deep neural nets, consideration of their ontology not just is of a philosophical 
interest, but also concerns the evaluation of the deep learning technique in a 
broader context. For one thing, ontology is at heart of our understanding of 
others. We cannot communicate with and understand those who have an utterly 
diferent ontology from us. Even our predictions and anticipation of behaviors 
shown by other people or animals depend on our understanding of their ontol-
ogy. For this reason, the application and acceptance of the deep learning tech-
nique in our society must be accompanied by an elucidation of its ontology. 
This is so even if it is an intrinsically hard problem with no single correct 
answer, as we suggested in Chapter 4. 

6.2 The Semantics of Statistics 

While ontology stipulates the type of “entities” to be assumed in statistical 
inferences, semantics concerns how these mathematical posits relate to the actual 
world. From a broader philosophical context, this pertains to the problem of 
interpretation or representation of theoretical models. Like the empirical sci-
ences, statistics builds models of stochastic phenomena in order to study their 
properties and behavior. But since such models are idealized abstract entities 
distinct from the targets themselves, the use of a model naturally raises the 
question as to what, if anything, in the real world do the model itself and the 
results derived from it correspond to. This sets the question to be answered by 
the semantics of statistics. 

Semantic questions arise at each ontological layer discussed previously. The 
most intensively discussed among these is the semantics of probability models, 
that is, the problems concerning the nature and meaning of events and probabili-
ties. As is well known, this question has yielded two conficting answers, sub-
jectivism and frequentism, and has provoked ferce debates between them. 
According to the subjectivist interpretation canonical in Bayesianism, an event 
stands for a proposition, and a probability represents the degree of belief in that 
proposition. In contrast, frequentism defnes an event as an objective state of 
afairs, and probabilities as its limiting frequency. While we did not go into the 
fne details of these semantic claims in this book, rigorously establishing these 



 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Ontology, Semantics, and Epistemology of Statistics 177 

corresponding relations in general will call for a certain representation theorem. 
Given a probability model on the one hand and some system of the actual 
world (which, for instance, would be a set of propositions ordered by the pref-
erence of an epistemic agent in the case of subjectivism, or a set or collective of 
events and their relative frequencies in the case of frequentism) on the other, 
the desired representation theorem would secure the correspondence between 
these two structures by establishing a homomorphic relationship between them. 
The homomorphism will then guarantee that one can coherently translate state-
ments about the probability model into statements about corresponding aspects 
of the world. From this it should be clear that the problem of probability 
semantics, by its nature, concerns the interface between mathematical models 
and the actual world, and not the mathematical study of formal models 
themselves—a fortiori, semantics does not license, guide, or constrain particular 
mathematical derivations or proofs. In this sense, statistics, as a branch of applied 
mathematics, may and does proceed independently of its semantic characteriza-
tion, just as the ongoing research in quantum mechanics does not depend on 
its interpretation (say the Copenhagen interpretation), and number theorists can 
get on with their theorem-proving work without being concerned about the 
applicability of numbers to real phenomena (e.g., Krantz et al. 1971). Indeed, 
the biggest advantage of building mathematical models is that it enables us to 
study empirical phenomena as if one were dealing with a problem of pure math, 
without worrying about interpretative issues. However, it is ultimately the job 
of semantics to guarantee that this kind of mathematical investigation also rep-
resents a study into nature. 

In addition to providing an intelligible interpretation by which we can 
anchor statistical formulas in the real world, semantic analysis plays the further, 
negative but important role of preventing meaningless inferences and conclu-
sions. The analysis of the conditions of meaningfulness—which may be called 
a “critique” in the Kantian or Wittgensteinian sense—has been the major 
motivation behind the theory of measurement, which studies the conditions of 
the applicability of mathematical quantifcation and operations to empirical 
phenomena (Narens 2007). In statistics, one often encounters this problem of 
meaningfulness in the form of the distinction between various types of scales 
of measurement. It does not make sense, for instance, to compare averages of 
ordinal variables, because they are not invariant under transformations that 
preserve order. That is, such averages can change even if the ordering as a 
whole remains the same, if we were to assign diferent numbers to the places 
in the ordering. This means that the “average of an order,” although calculable, 
is not a meaningful concept. The criterion of meaningfulness and the range 
of mathematical operations meaningfully applicable to a given variable depend 
on what the variable represents. This is also true for probability values. That 
is, what we can meaningfully discuss about probabilities is determined by what 
they represent. As we have seen, if we adopt the frequentist interpretation, 
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which equates probabilities with limiting relative frequencies of events, we 
cannot meaningfully talk about such a thing as the “probability of a hypothesis.” 
The subjectivist interpretation, on the other hand, does license the assignment 
of probabilities to hypotheses, but these probabilities are degrees of beliefs of 
individual epistemic agents and do not measure the objective correctness of 
the hypotheses. In this way, one’s choice of semantics circumscribes what one 
can meaningfully say and conclude about probability values. 

Semantic questions also arise in connection with causal models, which reside 
in a one-step-deeper ontological layer. Indeed, now that the battle over the 
semantics of probability waged between subjectivism and frequentism has largely 
been settled toward the turn of the century, the semantics of causality is emerg-
ing as a more relevant topic. Despite being an extremely common term, causality 
has long been a concept shrouded in mystery. Ever since Hume, philosophers 
have tried to understand what is and should be meant by a causal claim, such 
as that X causes Y. The two approaches to causal modeling discussed in Chapter 
5 propose answers to this semantic question, albeit in slightly diferent ways. 
Counterfactual models introduce potential variables that represent possible worlds 
and defne a causal efect as a diference in their values between multiple poten-
tial/possible worlds. Structural causal models, on the other hand, defne inter-
ventions on graphs and identify a causal efect as a change in the distribution 
of an efect variable induced by an intervention. These explicit defnitions of 
causal relationships in terms of mathematical frameworks open up the possibility 
of empirically estimating causal efects. At the same time, the semantics delineates 
the range of empirically meaningful questions about causality. For instance, can 
race or sex be a cause of other variables (Marcellesi 2013; Glymour and Glymour 
2014; VanderWeele and Robinson 2014)? That is, can one meaningfully consider 
interventions on these attributes, which are often seen as essential constituents 
of personal identity? If the answer is negative, a causal claim about the infuence 
of gender on salary, say, will be regarded as meaningless under the interventionist 
interpretation of causation, and its truth value will be indeterminable. 

Semantic analysis, therefore, precedes epistemological investigation and lays 
down the conditions of its possibility. Once a certain semantic framework is 
set, statistics qua epistemological practice can be carried through as a mathemati-
cal study of formal models, without worrying much about whether it corre-
sponds with the real world. For this reason, the importance of semantics is not 
conspicuous in well-developed scientifc disciplines. Physicists and psychologists 
may take for granted that the phenomena they study can be represented by 
and investigated within certain mathematical frameworks, and hence feel little 
need or interest in justifying their semantic assumptions. Likewise, some stat-
isticians may regard interpretative questions as a relic of the past, or even a 
hindrance to the steady development of mathematical statistics. In one sense, 
such a skepticism may be a healthy sign of the maturity and soundness of the 
discipline. Be that as it may, semantic questions will never disappear. This is 
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because, while statistics has a highly developed mathematical system, it cannot 
be confned within mathematics. Indeed, statisticians build formal models, 
calculate probabilities, and derive logical consequences; but what’s more, these 
conclusions must be interpreted in the context of concrete phenomena if one 
wants to solve real problems. What is meant by a low or high p-value, AIC 
score, or posterior probability of a given hypothesis? Unless given a concrete 
meaning, these values do not appeal to people’s minds or afect the social 
attitude toward the hypothesis in question. Statistics is a mathematical science 
that studies the deductive consequences of formal models, and at the same 
time it is an empirical science that aims to apply these models and conclusions 
to real-world problems. Because of this Janus-like nature, it cannot cast of the 
semantic issues of how its mathematical machinery comes to have an empirical 
signifcance. 

6.3 The Epistemology of Statistics 

Once posited and interpreted, probability models can be put in service of car-
rying out inductive inferences from data. In this book we have used the term 
“epistemology” to denote the core part of statistics, which deals with this 
inferential procedure. Statistical inference carries within itself an essential dif-
fculty, in that it tries to fathom the ungiven from the given. The ultimate goals 
it aims for are sometimes infeasible, as in the case of knowing the nature of an 
entire population, and at other times a sheer metaphysical impossibility, as in 
the case of the fundamental problem of causal inference (Chapter 5). We can-
not, therefore, unconditionally and uncritically accept conclusions drawn from 
statistical procedures as knowledge in their own right. Nonetheless, consequences 
of a sound inference may well be regarded as justifed, and statistics does assume 
a role of justifying scientifc hypotheses in modern society. From this follows 
the epistemological question regarding in what sense conclusions of statistical 
inferences are justifed. When we make predictions or judge hypotheses under 
the guide of statistics, on what grounds can we be sure that we are making 
valid decisions? 

Driven by this question, we have characterized the various methodologies 
of statistics as epistemologies standing upon diferent concepts of justifcation. 
Bayesian statistics is comparable to internalist epistemology, with its emphasis 
on the logical coherence among beliefs, while classical statistics is comparable 
to externalist epistemology, which places emphasis on the reliability of the 
belief-acquisition process. By no means is this comparison intended to suggest 
that there is a perfect analogy between the statistical methodologies on the one 
hand and the philosophical doctrines on the other. The simple dichotomy 
proposed in this book hardly does justice to the nuanced and complicated 
practice of statistics and epistemology in the literature. Just as all statistical models 
are wrong, our meta-statistical analysis distorts and deforms the true nature of 
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both disciplines. We believe, however, that drawing a connection between the 
two distinct scholarly traditions in terms of a simple and idealized model proves 
“useful” not only for characterizing their epistemic natures, but also for eluci-
dating the fundamental challenges they confront in the face of the problem of 
inductive inference.1 One among several perspectives ofered by this parallelism 
is the reinterpretation of the partisan debate between the Bayesian and frequentist 
schools as an epistemological controversy over the “correct” concept of justifca-
tion. At the heart of this controversy is the truth-conducive property of justi-
fcation, one of the central topics of the modern epistemology. Bayesians evaluate 
the degree of belief in a hypothesis using the internalist inferential calculus, in 
such a way as to cohere with the data and likelihood. But how and why does 
this kind of internal coherence warrant truth, understood as a correspondence 
with the outer world? This is a fundamental question for internalist epistemol-
ogy in general, and to tackle this issue, internalists need to step out of their 
belief system and take external factors into account (Section 2.3.3). On the 
other hand, in classical statistics the decision of rejecting or not rejecting a 
hypothesis is justifed on the basis of the reliability of the testing process. Such 
an externalist justifcation, however, is truth-conducive only when the process 
is actually trustworthy and properly employed. Since a test’s verdict or p-value 
remains silent about the validity of these external conditions, the proper use of 
a statistical test calls for an independent check on the reliability of its justifca-
tory machinery (Section 3.3.3). 

The holy grail of traditional epistemology—both internalist and externalist— 
is the truth. In the context of statistics, this amounts to seeking for a hypothesis 
that faithfully captures the probability model, and the justifcatory concepts of 
traditional statistics, both Bayesian and classical, aim to warrant this objective cor-
respondence. The truth, however, is not necessarily the sole aim of statistical 
practice. The primary motivation of introducing statistical models, we recall, is 
the prediction of unknown phenomena; it might make more sense, then, to 
evaluate statistical hypotheses on the basis of their predictive performance. This 
idea led us to a kind of epistemic pragmatism, which puts more epistemological 
value on the performance or utility of a statistical hypothesis than on its veracity. 
Chapter 4 introduced the theory of model selection and the deep learning tech-
nique as major approaches along this line of thought. The theory of model selec-
tion ofers a theoretical framework and criteria for assessing the generalization 
capability of models, while the rapid development in the machine learning literature 
has enabled us to build and train models whose abilities far surpass those of con-
ventional statistical models. In these engineering pursuits, the epistemological 
excellence of a model is only defned relative to the nature of a given task, and 
it is efectively determined by the loss function used to evaluate the model. 

However, this does not necessarily constitute a vindication of a Quinean 
“naturalized epistemology,” where philosophical epistemology loses its indepen-
dent a priori footing and is absorbed into the edifce of scientifc research, perhaps 
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as a sort of cognitive psychology (Quine 1986). The normative question about 
the nature of justifcation will retain its signifcance, especially when these model 
evaluation methods are applied to scientifc investigations. This is particularly 
pertinent to the increasing applications of deep learning methods in scientifc 
contexts: in what sense do they justify hypotheses, and what should we make 
of scientifc discoveries made by machines? Adopting machine-aided reasoning 
as a new method of scientifc investigation, and its results as genuine knowledge, 
will have serious ramifcations for our traditional conception of science. Ever 
since the time of Galileo, modern science has developed under a foundationalist 
ideal. This is most famously vindicated by the father of modern epistemology, 
Descartes, who argued that scientifc theories must be built upon a solid and 
clear foundation through the careful and conscious stacking of valid inferential 
steps. This kind of foundationalist ideal of science still has a strong appeal today. 
In statistics, too, Bayesianism and classical statistics show a similar foundationalist 
tendency in their attempt to ground their conclusions on explicitly stated theories 
and principles. In contrast, deep learning models lack a unifed theoretical 
underpinning that can be used to quality-control their reliability, which therefore 
must be assessed by a posteriori experiments. In the absence of an a priori theory 
of justifcation, should we count their fndings as scientifc knowledge? Chapter 
4 takes up the perspective of virtue epistemology as a clue for approaching this 
question. Virtue epistemology seeks the ground of justifcation not in a universal 
theory but in the personal capability of an individual epistemic agent. Likewise, 
the contemporary machine learning literature seems to justify conclusions of 
deep learning models on the basis of their individual or “personal” characteristics, 
such as benchmark scores, model architectures, and even the model’s creators. 
If so, the validity or truth-conduciveness of such justifcatory procedures should 
hinge upon the nature of the alleged “epistemic virtues,” and most importantly, 
whether they really constitute “virtues.” And from a broader context, there is 
also the question as to whether we are willing to accept the fndings justifed 
in such a way as scientifc knowledge. For one thing, the core tenet of virtue 
epistemology—to seek the basis of knowledge in the virtues of individual models 
or persons—may somewhat appear to be a regression to obscurantism, especially 
in light of the modern scientifc ideal that puts objective and universal laws as 
frst principles. This, or perhaps a similar impression, may be what lies at the 
bottom of the anxiety people feel toward the ongoing technological revolutions 
surrounding deep learning. If so, an epistemological inquiry into statistics should 
still be of great signifcance today. 

6.4 In Lieu of a Conclusion 

Guided by these ideas, in this book we have explored how contemporary sta-
tistics takes on the challenge of inductive inference, the long-standing philo-
sophical conundrum since the time of Hume. In particular, in various parts of 
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the book I have tried to draw a parallelism between statistics and philosophical 
epistemology. I hope this analogy helps to bridge the heretofore-unrelated two 
research traditions and to shed light on the problems characteristic of each. But 
readers are again reminded that this is just one perspective or model. To what 
extent this model is faithful to actual practice or useful in understanding the 
theories of both statistics and epistemology, I defer to the reader’s judgment. I 
have also tried in this book to cover some new topics that have not been dis-
cussed much in the traditional philosophy of statistics, such as deep learning 
and causal inference. On the fip side, the exposition and discussion of each 
topic has admittedly turned out terse and sometimes partial. Furthermore, I 
have not been able to address some of the major statistical topics like Bayesian 
hierarchical modeling, interval estimation, kernel methods, and recent develop-
ments based on information theory, despite their evident conceptual as well as 
practical importance. On the philosophical side, our coverage of epistemology 
has been limited to topics mainly developed in the last century, and leaves out 
all the recent trends in, say, contextualism, inferentialism, and social epistemol-
ogy. How these topics can be analyzed from a philosophical or statistical per-
spective is an open question, for which I invite the reader to join in on the 
inquiry. If the reader, after fnishing this book, fnds such a challenge appealing 
and worth pondering, I take it that the book has well achieved its initial promise 
of introducing philosophy to data scientists, and data science to philosophers. 

Note 

1. In this respect, we concur with Wimsatt’s (2007) slogan that false models are “means 
to truer theories.” 
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